2022-2023学年河南省商丘市某学校数学单招试卷(含答案)_第1页
2022-2023学年河南省商丘市某学校数学单招试卷(含答案)_第2页
2022-2023学年河南省商丘市某学校数学单招试卷(含答案)_第3页
2022-2023学年河南省商丘市某学校数学单招试卷(含答案)_第4页
2022-2023学年河南省商丘市某学校数学单招试卷(含答案)_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河南省商丘市某学校数学单招试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.A.3

B.8

C.

2.tan150°的值为()A.

B.

C.

D.

3.(X-2)6的展开式中X2的系数是D()A.96B.-240C.-96D.240

4.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}

5.设i是虚数单位,则复数(1-i)(1+2i)=()A.3+3iB.-1+3iC.3+iD.-1+i

6.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6

7.某品牌的电脑光驱,使用事件在12000h以上损坏的概率是0.2,则三个里最多有一个损坏的概率是()A.0.74B.0.096C.0.008D.0.512

8.sin750°=()A.-1/2

B.1/2

C.

D.

9.执行如图所示的程序框图,输出n的值为()A.19B.20C.21D.22

10.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)

二、填空题(10题)11.如图是一个程序框图,若输入x的值为8,则输出的k的值为_________.

12.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.

13.己知两点A(-3,4)和B(1,1),则=

14.数列{an}满足an+1=1/1-an,a2=2,则a1=_____.

15.若函数_____.

16.若lgx>3,则x的取值范围为____.

17.在△ABC中,C=60°,AB=,BC=,那么A=____.

18.

19.设lgx=a,则lg(1000x)=

20.

三、计算题(5题)21.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

22.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

24.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

25.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

四、证明题(5题)26.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

27.己知sin(θ+α)=sin(θ+β),求证:

28.△ABC的三边分别为a,b,c,为且,求证∠C=

29.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

30.若x∈(0,1),求证:log3X3<log3X<X3.

五、简答题(5题)31.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

32.已知a是第二象限内的角,简化

33.求证

34.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

35.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

六、综合题(5题)36.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.

37.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

38.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

39.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

40.

参考答案

1.A

2.B三角函数诱导公式的运用.tan150°=tan(180°-30°)=-tan30°=

3.D

4.D一元二次不等式方程的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

5.C复数的运算.(1-i)(1+2i)=1+2i-i-2i2=1+i+2=3+i,

6.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。

7.A

8.B利用诱导公式化简求值∵sinθ=sin(k×360°+θ)(k∈Z)∴sin750°=sin(2×360°+30°)=sin30°=1/2.

9.B程序框图的运算.模拟执行如图所示的程序框图知,该程序的功能是计算S=1+2+...+n≥210时n的最小自然数值,由S=n(n+1)/2≥210,解得n≥20,∴输出n的值为20.

10.C函数的定义.x+1>0所以.x>-1.

11.4程序框图的运算.执行循环如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2时;x=2×35+1=71,k=3时;x=2×71+1=143>115,k=4,此时满足条件.故输出k的值为4.

12.3/5古典概型的概率公式.由题可得,取出红球的概率为2/2+n=2/5,所以n=3,即白球个数为3,取出白球的概率为3/5.

13.

14.1/2数列的性质.a2=1/1-a1=2,所以a1=1/2

15.1,

16.x>1000对数有意义的条件

17.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.

18.√2

19.3+alg(1000x)=lg(1000)+lgx=3+a。

20.75

21.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

22.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

23.

24.

25.

26.

∴PD//平面ACE.

27.

28.

29.

30.

31.

32.

33.

34.

35.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

36.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为

37.

38.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论