2023届广东省珠海市香洲区数学八年级第一学期期末达标测试试题含解析_第1页
2023届广东省珠海市香洲区数学八年级第一学期期末达标测试试题含解析_第2页
2023届广东省珠海市香洲区数学八年级第一学期期末达标测试试题含解析_第3页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列四个交通标志中,轴对称图形是()A. B. C. D.2.若是完全平方式,则m的值等于()A.1或5 B.5 C.7 D.7或3.如图△ABC,AB=7,AC=3,AD是BC边上的中线则AD的取值范围为()A.4<AD<10 B.2<AD<5 C.1<AD< D.无法确定4.甲、乙、丙、丁四人进行射箭测试,每人10次,测试成绩的平均数都是8.9环,方差分别是s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,则测试成绩最稳定的是()A.甲 B.乙 C.丙 D.丁5.已知:,,,,……,若(a、b为正整数)符合前面式子的规律,则a+b的值是().A.109 B.218 C.326 D.4366.-的相反数是()A.- B.- C. D.7.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知是一个任意角,在边,上分别取,移动角尺两边相同的刻度分别与点、重合,则过角尺顶点的射线便是角平分线.在证明时运用的判定定理是()A. B. C. D.8.下列长度的三条线段能组成三角形的是()A.6cm,8cm,9cm B.4cm,4cm,10cmC.5cm,6cm,11cm D.3cm,4cm,8cm9.如果是一个完全平方式,那么的值是()A. B. C. D.10.国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A. B. C. D.11.如图,在中,,分别以顶点,为圆心,大于长为半径作弧,两弧交于点,,作直线交于点.若,,则长是()A.7 B.8 C.12 D.1312.如图,在中,,分别以点A和点C为圆心,大于的长为半径画弧,两弧相交于点M、N,作直线交于点D,连接.若,,则的长是()A.12 B.16 C.18 D.24二、填空题(每题4分,共24分)13.小亮用天平称得一个罐头的质量为2.026kg,近似数2.026精确到0.1是_____.14.在实数范围内分解因式:____.15.近似数2.019精确到百分位的结果是_____.16.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=_____°.17.如图,木工师傅在做完门框后,为防止变形常常如图中所示那样钉上两条斜拉的木条,这样做是运用了三角形的________.18.如图,已知函数y=ax+b和的图象交于点P,根据图象,可得关于x的二元一次方程组的解是_______.三、解答题(共78分)19.(8分)如图,在⊿中,,于,.⑴.求的长;⑵.求的长.20.(8分)(1)计算:|﹣5|+(π﹣2020)0﹣()﹣1;(2)解方程:=1.21.(8分)计算我区在一项工程招标时,接到甲、乙两个工程队的投标书,从投标书中得知:每施工一天,甲工程队要万元,乙工程队要万元,工程小组根据甲、乙两队标书的测算,有三种方案:甲队单独完成这个工程,刚好如期完成;乙队单独完成这个工程要比规定时间多用5天;**********,剩下的工程由乙队单独做,也正好如期完成.方案中“星号”部分被损毁了.已知,一个同学设规定的工期为天,根据题意列出方程:(1)请将方案中“星号”部分补充出来________________;(2)你认为哪个方案节省工程款,请说明你的理由.22.(10分)已知2a+1的平方根是±3,3a+2b-4的立方根是-2,求4a-5b+8的立方根.23.(10分)为加快“智慧校园”建设,某市准备为试点学校采购一批两种型号的一体机,经过市场调查发现,每套型一体机的价格比每套型一体机的价格多万元,且用万元恰好能购买套型一体机和套型一体机.(1)列二元一次方程组解决问题:求每套型和型一体机的价格各是多少万元?(2)由于需要,决定再次采购型和型一体机共套,此时每套型体机的价格比原来上涨,每套型一体机的价格不变.设再次采购型一体机套,那么该市至少还需要投入多少万元?24.(10分)进入冬季,空调再次迎来销售旺季,某商场用元购进一批空调,该空调供不应求,商家又用元购进第二批这种空调,所购数量比第一批购进数量多台,但单价是第一批的倍.(1)该商场购进第一批空调的单价多少元?(2)若两批空调按相同的标价出售,春节将近,还剩下台空调未出售,为减少库存回笼资金,商家决定最后的台空调按九折出售,如果两批空调全部售完利润率不低于(不考虑其他因素),那么每台空调的标价至少多少元?25.(12分)定义:在平面直角坐标系中,对于任意两点,,若点满足,那么称点是点,的融合点.例如:,,当点满足,时,则点是点,的融合点.(1)已知点,,,请说明其中一个点是另外两个点的融合点.(2)如图,点,点是直线上任意一点,点是点,的融合点.①试确定与的关系式;②在给定的坐标系中,画出①中的函数图象;③若直线交轴于点.当为直角三角形时,直接写出点的坐标.26.如图,某校准备在校内一块四边形ABCD草坪内栽上一颗银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等,请用尺规作图作出银杏树的位置点P(不写作法,保留作图痕迹).

参考答案一、选择题(每题4分,共48分)1、C【解析】根据轴对称图形的定义:沿一条直线折叠后直线两边的部分能互相重合,进行判断即可.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误,故选C.【点睛】本题考查了轴对称图形,关键是能根据轴对称图形的定义判断一个图形是否是轴对称图形.2、D【分析】根据完全平方公式,首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.【详解】解:∵多项式是完全平方式,∴,∴解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.3、B【分析】先延长AD到E,且AD=DE,并连接BE,由于∠ADC=∠BDE,AD=DE,利用SAS易证△ADC≌△EDB,从而可得AC=BE,在△ABE中,再利用三角形三边的关系,可得4<AE<10,从而易求2<AD<1.【详解】延长AD到E,使AD=DE,连接BE,如图所示:∵AD=DE,∠ADC=∠BDE,BD=DC,∴△ADC≌△EDB(SAS)∴BE=AC=3,在△AEB中,AB-BE<AE<AB+BE,即7-3<2AD<7+3,∴2<AD<1,故选:B.【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.4、A【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【详解】解:∵s甲2=0.45,s乙2=0.50,s丙2=0.55,s丁2=0.65,∴S丁2>S丙2>S乙2>S甲2,∴射箭成绩最稳定的是甲;故选:A.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5、A【分析】通过观察已知式子可得分子与第一个加数相同,分母等于分子的平方减1,即可求解.【详解】解:由,,,,……,可知分子与第一个加数相同,分母等于分子的平方减1,∴在中,b=10,a=102-1=99,∴a+b=109,故选:A.【点睛】本题考查数字的变化规律;能够通过所给例子,找到式子的规律是解题的关键.6、D【解析】相反数的定义:只有符号不同的两个数互为相反数,1的相反数是1.【详解】根据相反数、绝对值的性质可知:-的相反数是.故选D.【点睛】本题考查的是相反数的求法.要求掌握相反数定义,并能熟练运用到实际当中.7、A【分析】由作图过程可得,,再加上公共边可利用SSS定理判定≌.【详解】解:在和中,

≌,

故选:A.【点睛】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.8、A【分析】根据三角形中:两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:A、∵两边之和大于第三边,两边之差小于第三边,∴能构成三角形,故本选项正确;B、∵4+4<10,∴不能构成三角形,故本选项错误;C、∵5+6=11,∴不能构成三角形,故本选项错误;D、∵3+4=7<8,∴不能构成三角形,故本选项错误.故选:A.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.9、C【分析】根据完全平方公式的逆运算去解答即可.【详解】解:所以故选C.【点睛】此题重点考察学生对完全平方公式的理解,熟记公式是解题的关键.10、A【分析】根据轴对称图形的定义和图案特点即可解答.【详解】A、是轴对称图形,故选项正确;

B、不是轴对称图形,故本选项错误;

C不是轴对称图形,故选项错误;

D、不是轴对称图形,故本选项错误.

故选A.【点睛】此题考查轴对称图形的概念,解题关键在于掌握其定义和识别图形.11、B【分析】根据垂直平分线的判定和性质,得到AD=BD,即可得到BC的长度.【详解】解:根据题意可知,直线MN是AB的垂直平分线,∴BD=AD=5,∴BC=BD+CD=5+3=8;故选:B.【点睛】本题考查了线段垂直平分线的判定和性质,解题的关键是熟练掌握垂直平分线的性质定理进行解题.12、C【分析】由作图可知,DN为AC的垂直平分线,求得CD=12,再求出∠DAB=30°,BD=6,问题得解.【详解】解:由作图可知,DN为AC的垂直平分线,∴AD=CD=12,∴∠C=∠CAD=30°,∵,∴∠CAB=60°,∴∠DAB=30°,∴,∴BC=BD+CD=1.故选:C【点睛】本题考查了线段垂直平分线的尺规作图、性质,含30°角的直角三角形性质,等腰三角形性质.由作图得到“DN为AC的垂直平分线”是解题关键.二、填空题(每题4分,共24分)13、2.0【解析】2.026kg,精确到0.1即对小数点后的0后边的数进行四舍五入,为2.0,故答案为2.0.14、【分析】将原式变形为,再利用平方差公式分解即可得.【详解】===,故答案为:.【点睛】本题主要考查实数范围内分解因式,解题的关键是熟练掌握完全平方公式和平方差公式.15、2.1【分析】根据四舍五入法可以解答本题.【详解】2.019≈2.1(精确到百分位),故答案为2.1.【点睛】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.16、1【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】解:∵∠3=30°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,

∴∠4=180°﹣60°﹣30°=90°,

∴∠5+∠6=180°﹣80°=90°,

∴∠5=180°﹣∠2﹣108°

①,

∠6=180°﹣90°﹣∠1=90°﹣∠1②,

∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=90°,即∠1+∠2=1°.

故答案为1.【点睛】本题考查了三角形的内角和定理,熟知正三角形、正四边形、正五边形个内角的度数是解答本题的关键.17、稳定性【分析】根据“防止变形”的目的,联系三角形的性质,可得出答案.【详解】由三角形的稳定性可知,钉上两条斜拉的木条,可以防止变形,故答案是运用了三角形的稳定性.【点睛】本题考查了三角形稳定性的实际应用,熟练掌握三角形的性质即可完成.18、【分析】根据题意利用方程组的解就是两个相应的一次函数图象的交点坐标求解.【详解】解:根据函数图可知,y=ax+b和的图象交于点P,P的纵坐标为-2,代入,求出P的坐标为(-4,-2),所以方程组的解为.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.三、解答题(共78分)19、(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.20、(1)4;(2)x=﹣2.【分析】(1)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=5+1﹣2=4;(2)方程两边乘以(x+1)(x﹣1)得:(x+1)2+4=(x+1)(x﹣1),解得:x=﹣2,检验:当x=2时,(x+1)(x﹣1)≠0,∴x=﹣2是原方程的解,∴原方程的解是:x=﹣2.【点睛】本题考查了有理数的混合运算和分式方程的计算,掌握有理数的混合运算法则以及分式方程的计算方法是解题的关键.21、(1)甲、乙两队合作4天;(2)方案可以节省工程款.【分析】(1)方程中代表甲乙合作4天所做工程量,据此可得结果;(2)根据题意先求得规定的天数,然后再计算三种方案的价钱后进行对比.【详解】解:(1)方程中代表甲乙合作4天所做工程量,所以“星号”部分应为“甲、乙两队合作4天”;(2)设规定的工期为天,根据题意列出方程:,解得:.经检验:是原分式方程的解.这三种施工方案需要的工程款为:(A)(万元);(B)(万元);(C)(万元).综上所述,方案可以节省工程款.【点睛】本题考查分式方程的应用,根据题意列出分式方程是关键,还需要注意解分式方程需要验根.22、1【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出1a-5b+8的值,然后根据立方根的定义求解.【详解】∵2a+1的平方根是±3,3a+2b-1的立方根是-2,

∴2a+1=9,3a+2b-1=-8,

解得a=1,b=-8,

∴1a-5b+8=1×1-5×(-8)+8=61,

∴1a-5b+8的立方根是1.【点睛】此题考查平方根,立方根的定义,列式求出a、b的值是解题的关键.23、(1)型一体机的价格是万元,型一体机的价格是万元;(2)1800万元【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【详解】解:(1)设每套型一体机的价格为万元,每套型一体机的价格为万元.由题意可得,解得,答:每套型一体机的价格是万元,型一体机的价格是万元;(2)设该市还需要投入万元,,,随的增大而减小.,当时,有最小值,,答:该市至少还需要投入万元.【点睛】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.24、(1)该商场购进第一批空调的单价2500元;(2)每台空调的标价至少为4000元.【分析】(1)设购进第一批空调的单价为元,则第二批空调的单价为元,用总价除以单价分别得到两批购买的数量,再根据第二批比第一批多15台得到方程求解即可;(2)设标价为元,用表示出总的销售额,然后根据利润率不低于列出不等式求解.【详解】解:(1)设购进第一批空调的单价为元,则第二批空调的单价为元,由题意得,解得,经检验,是原方程的解.答:该商场购进第一批空调的单价

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论