安徽省马鞍市培正学校2022年数学八年级第一学期期末复习检测试题含解析_第1页
安徽省马鞍市培正学校2022年数学八年级第一学期期末复习检测试题含解析_第2页
安徽省马鞍市培正学校2022年数学八年级第一学期期末复习检测试题含解析_第3页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在中,,点是边上两点,且垂直平分平分,则的长为()A. B. C. D.2.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A.3 B.5 C.6 D.73.如图,x轴是△AOB的对称轴,y轴是△BOC的对称轴,点A的坐标为(1,2),则点C的坐标为()A.(-1,-2) B.(1,-2) C.(-1,2) D.(-2,-1)4.下列分式中,不是最简分式的是()A. B.C. D.5.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形 B.矩形 C.正八边形 D.正六边形6.如图,AB=AC,AD=AE,BE,CD交于点O,则图中全等的三角形共有()A.0对 B.1对 C.2对 D.3对7.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形8.如图,在等腰中,,是斜边的中点,交边、于点、,连结,且,若,,则的面积是()A.2 B.2.5 C.3 D.3.59.如图,AD是等边三角形ABC的中线,AE=AD,则∠EDC=()度.A.30 B.20 C.25 D.1510.平面直角坐标系中,点(﹣2,4)关于x轴的对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.如图,△ABC≌△ADE,∠B=70°,∠C=30°,∠DAC=20°,则∠EAC的度数为______.12.若代数式是一个完全平方式,则常数的值为__________.13.地球的半径约为6371km,用科学记数法表示约为_____km.(精确到100km)14.如图,若,则_____度.15.若分式的值为0,则x=____.16.若分式的值为0,则x=_____________.17.长、宽分别为、的长方形,它的周长为16,面积为10,则的值为____.18.观察下列各式:1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52……请你把发现的规律用含正整数n的等式表示为___________.三、解答题(共66分)19.(10分)如图1,在平面直角坐标系中,点A(a,1)点B(b,1)为x轴上两点,点C在Y轴的正半轴上,且a,b满足等式a2+2ab+b2=1.

(1)判断△ABC的形状并说明理由;

(2)如图2,M,N是OC上的点,且∠CAM=∠MAN=∠NAB,延长BN交AC于P,连接PM,判断PM与AN的位置关系,并证明你的结论.

(3)如图3,若点D为线段BC上的动点(不与B,C重合),过点D作DE⊥AB于E,点G为线段DE上一点,且∠BGE=∠ACB,F为AD的中点,连接CF,FG.求证:CF⊥FG.

20.(6分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.21.(6分)先化简,再求值:,其中x=1.22.(8分)先阅读理解下面的例题,再按要求解答:例题:解不等式解:由有理数的乘法法则“两数相乘,同号得正”,得①或②解不等式组①得,解不等式组②得,所以不等式的解集为或.问题:求不等式的解集.23.(8分)节日里,兄弟两人在60米的跑道上进行短距离比赛,两人从出发点同时起跑,哥哥到达终点时,弟弟离终点还差12米.(1)若哥哥的速度为10米/秒,①求弟弟的速度;②如果两人重新开始比赛,哥哥从起点向后退10米,兄弟同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点.(2)若哥哥的速度为m米/秒,①弟弟的速度为________米/秒(用含m的代数式表示);②如果两人想同时到达终点,哥哥应向后退多少米?24.(8分)先化简,再求值:,其中x满足x2﹣x﹣1=1.25.(10分)观察下列勾股数:3,4,5;5,12,13;7,24,25;9,40,41;…,a,b,c.根据你发现的规律,请写出:(1)当a=19时,求b,c的值;(2)当a=2n+1时,求b,c的值;(3)用(2)的结论判断15,111,112,是否为一组勾股数,并说明理由.26.(10分)计算:(1)·(-3)-2(2)

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据CE垂直平分AD,得AC=CD,再根据等腰在三角形的三线合一,得,结合角平分线定义和,得,则.【详解】∵CE垂直平分AD∴AC=CD=6cm,∵CD平分∴∴∴∴∴故选:A【点睛】本题考查的知识点主要是等腰三角形的性质的“三线合一”性质定理及判定“等角对等边”,熟记并能熟练运用这些定理是解题的关键.2、B【解析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF=4+(3-2)=5.【详解】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选B.【点睛】本题考查了全等三角形的判定与性质,熟练掌握性质是解题的关键.3、A【分析】先利用关于x轴对称的点的坐标特征得到B(1,-2),然后根据关于y轴对称的点的坐标特征易得C点坐标.【详解】∵x轴是△AOB的对称轴,∴点A与点B关于x轴对称,而点A的坐标为(1,2),∴B(1,-2),∵y轴是△BOC的对称轴,∴点B与点C关于y轴对称,∴C(-1,-2).故选:A.【点睛】本题考查了坐标与图形变化之对称:关于x轴对称,横坐标相等,纵坐标互为相反数;关于y轴对称,纵坐标相等,横坐标互为相反数;关于直线x=m对称,则P(,b)⇒P(2m-,b),关于直线y=n对称,P(,b)⇒P(,2n-b).4、B【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子,分母分解因式,观察互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而约分.【详解】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解:A、是最简分式,不符合题意;B、不是最简分式,符合题意;C、是最简分式,不符合题意;D、是最简分式,不符合题意;故选:B.【点睛】本题主要考查了分式化简中最简分式的判断.5、C【解析】因为正八边形的每个内角为,不能整除360度,故选C.6、C【分析】由“SAS”可证△ABE≌△ACE,可得∠B=∠C,由“AAS”可证△BDO≌△CEO,即可求解.【详解】解:∵AB=AC,∠A=∠A,AD=AE,∴△ABE≌△ACE(SAS)∴∠B=∠C,∵AB=AC,AD=AE,∴BD=CE,且∠B=∠C,∠BOD=∠COE,∴△BDO≌△CEO(AAS)∴全等的三角形共有2对,故选:C.【点睛】本题考查三角形全等的性质,熟练掌握全等三角形的判定定理是解题关键.7、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.8、B【分析】首先根据等腰直角三角形的性质和余角的性质可证明△BPE≌△CPD,可得PE=PD,于是所求的的面积即为,故只要求出PE2的值即可,可过点E作EF⊥AB于点F,如图,根据题意可依次求出BE、BF、BP、PF的长,即可根据勾股定理求出PE2的值,进而可得答案.【详解】解:在中,∵,AC=BC,是斜边的中点,∴AP=BP=CP,CP⊥AB,∠B=∠BCP=∠DCP=45°,∵∠DPC+∠EPC=90°,∠BPE+∠EPC=90°,∴∠DPC=∠BPE,在△BPE和△CPD中,∵∠B=∠DCP,BP=CP,∠BPE=∠DPC,∴△BPE≌△CPD(ASA),∴PE=PD,∵,,∴CE=1,BE=3,过点E作EF⊥AB于点F,如图,则EF=BF=,又∵BP=,∴,在直角△PEF中,,∴的面积=.故选:B.【点睛】本题考查了等腰直角三角形的性质和判定、全等三角形的判定和性质、勾股定理和三角形的面积等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.9、D【详解】∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是△ABC的中线,∴∠DAC=∠BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED===75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选D.【点睛】此题考查了等边三角形的性质、等腰三角形的性质及三角形的内角和定理的应用.解题的关键是注意三线合一与等边对等角的性质的应用,注意数形结合思想的应用.10、C【解析】试题分析:利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.解:点(﹣2,4)关于x轴的对称点为;(﹣2,﹣4),故(﹣2,﹣4)在第三象限.故选C.考点:关于x轴、y轴对称的点的坐标.二、填空题(每小题3分,共24分)11、60°【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质计算即可.【详解】解:∵∠B=70°,∠C=30°,∴∠BAC=180°-70°-30°=80°,∵△ABC≌△ADE,∴∠DAE=∠BAC=80°,∴∠EAC=∠DAE-∠DAC=60°,故答案为60°.【点睛】本题考查全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.12、±12【分析】利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵是一个完全平方式,∴−k=±12,解得:k=±12故填:±12.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13、6.4×1.【分析】先把原数写成科学记数法,再根据精确度四舍五入取近似数,即可.【详解】6371km=6.371×1km≈6.4×1km(精确到100km).故答案为:6.4×1【点睛】本题主要考查科学记数法和近似数,掌握科学记数法的定义和近似数精确度的意义是解题的关键.14、【分析】根据平角的定义可得∠AMN=180°-∠1,∠ANM=180°-∠2,从而求出∠AMN+∠ANM,然后根据三角形的内角和定理即可求出∠A.【详解】解:∵∠AMN=180°-∠1,∠ANM=180°-∠2,∴∠AMN+∠ANM=180°-∠1+180°-∠2=360°-()=11°∴∠A=180°-(∠AMN+∠ANM)=1°故答案为:1.【点睛】此题考查的是平角的定义和三角形的内角和定理,掌握平角的定义和三角形的内角和定理是解决此题的关键.15、1【分析】根据分式的值为零的条件得到x-1=0且x≠0,易得x=1.【详解】∵分式的值为0,∴x−1=0且x≠0,∴x=1.故答案为1.【点睛】本题考查了分式的值为零的条件,解题的关键是熟练的掌握分式的值为零的条件.16、2【分析】分式的值为零,即在分母的条件下,分子即可.【详解】解:由题意知:分母且分子,∴,故答案为:.【点睛】本题考查了分式为0的条件,即:在分母有意义的前提下分子为0即可.17、80【解析】∵长、宽分别为a、b的矩形,它的周长为16,面积为10,∴a+b=16÷2=8,ab=10,∴a²b+ab²=ab(a+b)=10×8=80,故答案为80.18、(n-1)(n+1)+1=n1.【详解】解:等式的左边是相差为1的两个数相乘加1,右边是两个数的平均数的平方,由题,∵1×3+1=11;3×5+1=41;5×7+1=61;7×9+1=81,∴规律为:(n-1)(n+1)+1=n1.故答案为:(n-1)(n+1)+1=n1.三、解答题(共66分)19、(1)△ABC是等腰三角形;(2)PM∥AN,证明见解析;(3)见解析【分析】(1)由题意可得a=-b,即OA=OB,根据线段垂直平分线的性质可得AC=BC,即△ABC是等腰三角形;(2)延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,根据等腰三角形的性质可得∠NAB=∠NBA,∠ANO=∠BNO,可得∠PNC=∠CNE,根据角平分线的性质可得PM平分∠CPB,根据三角形的外角的性质可得∠CPM=∠CAN=2∠NAB,即可得PM∥AN;

(3)延长GF至点M,使FM=FG,连接CG,CM,AM,由题意可证△AMF≌△DGF,可得AM=DG,由角的数量关系可得∠BCO=∠BDG=∠DBG,即DG=BG,根据“SAS”可证△AMC≌△BGC,可得CM=CG,根据等腰三角形性质可得CF⊥FG.【详解】解:(1)∵a2+2ab+b2=1,

∴(a+b)2=1,

∴a=-b,

∴OA=OB,且AB⊥OC,

∴OC是AB的垂直平分线,

∴AC=BC,

∴△ACB是等腰三角形(2)PM∥AN,

理由如下:

如图,延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,

∵OC是AB的垂直平分线,

∴AN=NB,CO⊥AB

∴∠NAB=∠NBA,∠ANO=∠BNO

∴∠PNC=∠CNE,且MH⊥AE,MD⊥BP,

∴MD=MH,

∵∠CAM=∠MAN=∠NAB,

∴AM平分∠CAE,且MG⊥AC,MH⊥AE

∴MG=MH

∴MG=MD,且MG⊥AC,MD⊥BP,

∴PM平分∠BPC

∵∠CAM=∠MAN=∠NAB,∠PNA=∠NAB+∠NBA

∴∠CAN=2∠NAB=∠PNA,

∵∠CPB=∠CAN+∠PNA

∴∠CPB=4∠NAB

∵PM平分∠BAC

∴∠CPM=2∠NAB

∴∠CPM=∠CAN

∴PM∥AN

(3)如图,延长GF至点M,使FM=FG,连接CG,CM,AM,

∵MF=FG,∠AFM=∠DFG,AF=DF,

∴△AMF≌△DGF(SAS)

∴AM=DG,∠MAD=∠ADG,

∵DE⊥AB,CO⊥AB

∴DE∥CO

∴∠BCO=∠BDE

∵∠ACB=∠BGE,∠BGE=∠BDE+∠DBG=∠BCO+∠DBG,∠ACB=2∠BCO,

∴∠BCO=∠BDG=∠DBG

∴DG=BG,

∴AM=BG

∵∠CAM=∠MAD-∠CAD=∠ADG-∠CAD=∠ADB-∠BDE-∠CAD=∠ADB-∠OCB-∠CAD=∠OCB

∴∠CAM=∠CBG,且AC=BC,AM=BG

∴△AMC≌△BGC(SAS)

∴CM=CG,且MF=FG

∴CF⊥FG

【点睛】本题是三角形综合题,考查了线段垂直平分线的性质,角平分线的性质,等腰三角形的性质,全等三角形的判定和性质等知识,添加恰当的辅助线构造全等三角形是本题的关键,属于中考压轴题.20、(1)证明见解析;(2)结论:BD=2CF.理由见解析;(3).【分析】(1)欲证明BF=AD,只要证明△BCF≌△ACD即可;(2)结论:BD=2CF.如图2中,作EH⊥AC于H.只要证明△ACD≌△EHA,推出CD=AH,EH=AC=BC,由△EHF≌△BCF,推出CH=CF即可解决问题;(3)利用(2)中结论即可解决问题.【详解】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BC=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.21、;1【分析】先因式分解,再约分,化简,代入求值.【详解】解:原式===当x=1时,原式=【点睛】本题考查分式计算题,一般需要熟练掌握因式分解,通分,约分的技巧.(1)因式分解一般方法:提取公因式:;公式法:,(平方差公式);,(完全平方公式);十字相乘法:(x+a)(a+b)=.(1)分式的约分步骤:(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去.(1)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去.

注:公因式的提取方法:系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式.(3)通分:先求出所有分式分母的最简公分母,再将所有分式的分母变为最简公分母.同时各分式按照分母所扩大的倍数,相应扩大各自的分子.

注:最简公分母的确定方法:系数取各因式系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.(4)易错示例:1+;.22、.【分析】仿造例题,将所求不等式变形为不等式组,然后进一步求取不等式组的解集最终得出答案即可.【详解】∵两数相乘(或相除),异号得负,∴由不等式可得:或,解不等式组①得:,解不等式组②得:该不等式组无解,综上所述,所以原不等式解集为:.【点睛】本题主要考查了不等式组解集的求取,熟练掌握相关方法是解题关键.23、(1)①弟弟的速度是8米/秒;②不能同时到达,哥哥先到达终点;(2)①0.8m;②如果两人想同时到达终点,哥哥应向后退15米【分析】(1)①根据时间=路程速度,及哥哥跑60米的时间=弟弟跑(60-12)米的时间列出方程,求解即可;②利用时间=路程速度,可分别求出哥哥、弟弟到达终点的时间,比较后即可得出结论;(2)①根据时间=路程速度,及哥哥跑60米的时间=弟弟跑(60-12)米的时间;②设哥哥后退y米,根据时间=路程速度,及哥哥跑(60+y)米的时间=弟弟跑60米的时间列出方程,即可得出关于y的分式方程,解之经检验后即可得出结论.【详解】(1)①设弟弟的速度为x米/秒,则解得:x=8,经检验,x=8是原分式方程的解,且符合题意答:弟弟的速度是8米/秒;②哥哥跑完全程所需要的时间为(60+10)÷10=7(秒),弟弟跑完全程所需要的时间为(秒)>7秒,∴哥哥先到达终点;(2)①设弟弟的速度为x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论