2021-2022学年安徽省巢湖市某学校数学单招试卷(含答案)_第1页
2021-2022学年安徽省巢湖市某学校数学单招试卷(含答案)_第2页
2021-2022学年安徽省巢湖市某学校数学单招试卷(含答案)_第3页
2021-2022学年安徽省巢湖市某学校数学单招试卷(含答案)_第4页
2021-2022学年安徽省巢湖市某学校数学单招试卷(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年安徽省巢湖市某学校数学单招试卷(含答案)一、单选题(20题)1.下列四个命题:①垂直于同一条直线的两条直线相互平行;②垂直于同一个平面的两条直线相互平行;③垂直于同一条直线的两个平面相互平行;④垂直于同一个平面的两个平面相互平行.其中正确的命题有()A.1个B.2个C.3个D.4个2.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)3.A.

B.

C.

D.U

4.正方形ABCD的边长为12,PA丄平面ABCD,PA=12,则点P到对角线BD的距离为()A.12

B.12

C.6

D.6

5.实数4与16的等比中项为A.-8B.C.8

6.已知拋物线方程为y2=8x,则它的焦点到准线的距离是()A.8B.4C.2D.67.A.1B.8C.278.sin750°=()A.-1/2

B.1/2

C.

D.

9.A.11B.99C.120D.12110.A.1B.-1C.2D.-211.若函数f(x)=kx+b,在R上是增函数,则()A.k>0B.k012.若事件A与事件ā互为对立事件,则P(A)+P(ā)等于()A.1/4B.1/3C.1/2D.113.下列四组函数中表示同一函数的是()A.y=x与y=

B.y=2lnx与y=lnx2

C.y=sinx与y=cos()

D.y=cos(2π-x)与y=sin(π-x)

14.贿圆x2/7+y2/3=1的焦距为()A.4

B.2

C.2

D.2

15.若函数f(x)=x2+mx+1有两个不同的零点,则实数m的取值范围是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-l)∪(l,+∞)16.已知P:x1,x2是方程x2-2y-6=0的两个根,Q:x1+x2=-5,则P是Q的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件17.A.B.C.D.18.已知直线L过点(0,7),且与直线y=-4x+2平行,则直线L的方程为()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+719.根据如图所示的框图,当输入z为6时,输出的y=()A.1B.2C.5D.1020.A.ac<bc

B.ac2<bc2

C.a-c<b-c

D.a2<b2

二、填空题(10题)21.如图所示的程序框图中,输出的S的值为______.22.23.双曲线3x2-y2=3的渐近线方程是

。24.25.26.不等式(x-4)(x+5)>0的解集是

。27.有一长为16m的篱笆要围成一个矩形场地,则矩形场地的最大面积是________m2.28.29.若,则_____.30.三、计算题(10题)31.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。32.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2.33.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.34.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.35.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.36.在等差数列{an}中,前n项和为Sn,且S4=-62,S6=-75,求等差数列{an}的通项公式an.37.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.38.解不等式4<|1-3x|<739.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。40.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。四、证明题(5题)41.己知sin(θ+α)=sin(θ+β),求证:42.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.43.己知a=(-1,2),b=(-2,1),证明:cos〈a,b〉=4/5.44.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.45.△ABC的三边分别为a,b,c,为且,求证∠C=五、综合题(5题)46.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.47.48.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.49.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)50.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.六、解答题(5题)51.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?52.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.53.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.54.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为F1和F2,且|F1F2|=2,点(1,3/2)在该椭圆上.(1)求椭圆C的方程;(2)过F1的直线L与椭圆C相交于A,B两点,以F2为圆心为半径的圆与直线L相切,求△AF2B的面积.55.若x∈(0,1),求证:log3X3<log3X<X3.

参考答案

1.B直线与平面垂直的性质,空间中直线与直线之间的位置关系.①垂直于同一条直线的两条直线相互平行,不正确,如正方体的一个顶角的三个边就不成立;②垂直于同一个平面的两条直线相互平行,根据线面垂直的性质定理可知正确;③垂直于同一条直线的两个平面相互平行,根据面面平行的判定定理可知正确;④垂直于同一个平面的两个平面相互平行,不正确,如正方体相邻的三个面就不成立.

2.B由题可知,3-x2大于0,所以定义域为(-3,3)

3.B

4.D

5.B

6.B抛物线方程为y2=2px=2*4x,焦点坐标为(p/2,0)=(2,0),准线方程为x=-p/2=-2,则焦点到准线的距离为p/2-(-p/2)=p=4。

7.C

8.B利用诱导公式化简求值∵sinθ=sin(k×360°+θ)(k∈Z)∴sin750°=sin(2×360°+30°)=sin30°=1/2.

9.C

10.A

11.A

12.D

13.Ccos(3π/2+x)=cos(π/2-x)=sinx,所以选项C表示同一函数。

14.A椭圆的定义.因为a2=7,b2=3,所以c2-a2-b2=4,c=2,2c=4.

15.C一元二次方程的根的判别以及一元二次不等式的解法.由题意知,一元二次方程x2+mx+1=0有两个不等实根,可得△>0,即m2-4>0,解得m>2或m<-2.故选C

16.A根据根与系数的关系,可知由P能够得到Q,而已知x1+x2=5,并不能推出二者是原方程的根,所以P是Q的充分条件。

17.A

18.C直线的点斜式方程∵直线l与直线y=-4x+2平行,∴直线l的斜率为-4,又直线l过点(0,7),∴直线l的方程为y-7=-4(x-0),即y=-4x+7.

19.D程序框图的运算.输入x=6.程序运行情况如下:x=6-3=3>0,x=3-3=0≥0,x=0-3=-3<0,退出循环,执行:y=x2+1=(-3)2+1=10,输出y=10.

20.C21.11/12流程图的运算.分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=1/2+1/4+1/6的值,由于1/2+1/4+1/6=11/12故答案为:11/1222.a<c<b

23.,

24.25.0.426.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。27.16.将实际问题求最值的问题转化为二次函数在某个区间上的最值问题.设矩形的长为xm,则宽为:16-2x/2=8-x(m)∴S矩形=x(8-x)=-x2+8x=-(x-4)2+16≤16.28.-129.27

30.

31.

32.

33.34.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为35.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<236.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-2337.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x

-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

38.

39.

40.

41.

42.∴PD//平面ACE.

43.44.证明:考虑对数函数y=lgx的限制知:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx

(0,1)∴lgx-2<0A-B∴A<B

45.

46.

47.48.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为49.50.解:(1)斜率k

=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=151.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,李经理想获得利润22500,元,需将这批香菇存放50天后出售.(3)设利润为w,则由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,当x=100时,wmax=30000;又因为100∈(0,110),所以李经理将这批香菇存放100天后出售可获得最大利润为30000元.

52.∴PD//平面ACE.53.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论