




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE16函数的应用II一、教学内容分析1.教学主要内容本课为数学必修一模块第三章第节的内容。本节课要利用本章中学习的基本初等函数:指数函数、对数函数、幂函数的性质来解决在实际生活中的有关增长率的问题。2.教材编写特点新课标、新教材非常重视课本知识与实际问题的结合。新课标中强调,“学生将学习指数函数对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程和方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社会中的简单问题。”新课标、新教材还十分重视“以学生为本”,依照学生对知识的认知过程,强调知识的“螺旋式上升”。在B版教材中,函数的应用被分成两部分,分别设置在第二章与第三章中。在第二章《函数的应用(Ⅰ)》中,主要是对学生已经熟知的一次函数和二次函数的实际应用。而在第三章《函数的应用(Ⅱ)》的讲授中,需要在之前的基础上提升、总结,使学生掌握利用数学建模的思想解决实际问题的方法。教材中的三道例题主要涉及到实际生活中与增长率相关的问题,主要是指数函数模型的应用,并在求解过程中运用到对数。3.教材内容的数学核心思想数学建模思想4.我的思考:根据学生和教材的情况和特点,我们的这节课就以“增长率问题”为研究对象,并且补充了幂函数型的数学模型,来讲解这三种基本初等函数在经济学、核物理学和考古学等领域的应用。在教学方法上,我们采用学案导学法,引起学生的学习兴趣,并引导学生深入理解概念,使学生通过这一节课的学习理解掌握解决实际问题的方法、步骤。二、学生情况分析1.学生已有知识基础、已有生活经验和学习该内容的经验、学习该内容可能的困难、学习的兴趣、学习方式和学法分析:通过对教材前面内容的学习,学生已经初步掌握了指数函数、对数函数与幂函数这三种基本初等函数的性质,并且初步具备了利用函数模型解决实际问题的思想和方法。对于与实际生活结合紧密的问题,容易引起学生的学习兴趣,但是,学生对这类应用问题普遍具有畏难情绪,主要的困难就在于对实际问题、文字材料的理解,以及如何从实际问题中抽象出数学模型。2.我的思考:在教学方法上,我们采用学案导学法,引起学生的学习兴趣,并引导学生深入理解概念,使学生通过这一节课的学习理解掌握解决实际问题的方法、步骤。三、学习目标1.学生能够运用指数函数、对数函数、幂函数的性质,解决有关增长率的某些实际问题。2.学生能通过对所研究问题分层设问的解答过程,逐步理解掌握解决实际问题的三个主要步骤。3.通过对指数函数、对数函数、幂函数的实际应用,学生能够提高对数学的学习兴趣,激发出学习数学的热情;通过分层设问,学生能够树立起对学好数学的信心,并养成锲而不舍的钻研精神和科学态度。四、教学活动活动内容活动的组织与实施设计意图时间分配一、设置阅读,引入疑问阅读材料:京华时报讯:利息税调减相当于存款利率增%,记者:赵鹏|时间:2022-07-26本报讯(记者赵鹏)昨天,中国人民银行条法司副司长刘慧兰在接受中国政府网访谈时指出,国务院宣布自8月15日起将利息税的适用税率由20%调减为5%,相当于增加存款利率近个百分点。有网友提出,本次加息和调减利息税后,居民的实际存款利率将达到怎样的水平对此,刘慧兰以目前一年期定期存款为例分析说,金融机构一年期存款基准利率上调个百分点,由现行的%提高到%。同时,利息税率由20%调减为5%,相当于存款利率增加了将近个百分点。教师给出一段新闻,学生进行阅读理解通过阅读,引出基础知识5分钟二、问题分层,释疑解惑问题1:金融机构一年期存款基准利率%是什么意思答案:增长率公式:问题2:如果银行的一年期存款利率为%,现存入本金1000元,试计算第1年后的本利和是多少,第2年后的本利和是多少答案:1年后的本利和为元2年后的本利和为
元
复利:一种计算利息的方法,即把前一期的利息和本金加在一起算做本金,再计算下一期的利息。问题3:有一种储蓄按复利计算利息,本金为元,每期利率为,设本利和为,存期为,写出本利和随存期变化的函数式.答案:问题4:生活中还有哪些类似增长率(即两个量的关系)的问题答案:当时,增长率;当时,增长率,此时称为负增长率.教师层层设问,学生讨论,明确概念,探索归纳,找到解题方法由此引入两个量的关系——增长率概念.
通过实例,指出“参照物”的变化,并引出复利的概念.
(1)自变量要有定义域;(2)让学生初步领略解决应用题要关注根据各个量的关系,进行数学化设计:即建立目标函数,将实际问题转化为数学问题.
(1)指出不同领域里两个量关系的表达方式不同,如打折问题,衰变等,并借此指出负增长率的概念;(2)让学生初步领略解决应用题要关注阅读理解:即读懂题目中的文字叙述所反映的实际背景,领悟其中的数学本质,弄清题中出现的量及其数学含义.15分钟三、例题演绎,知识升华例:半衰期是指某种特定物质的浓度经过某种反应降低到初始浓度的一半时所消耗的时间.比如:放射性核素的衰变、一级化学反应、药物在体内的吸收和代谢等都有半衰期.现有一种放射性元素,最初的质量为500g,按每年10%衰减.1求年后,这种放射性元素质量表达式;2由求出的函数表达式,求这种放射性元素的半衰期(精确到).解:(1)最初的质量为500g,经过1年,,经过2年,,……由此推知,年后,.(2)解方程.,,,
所以这种放射性元素的半衰期约为年.考古探秘:湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的%,经研究发现,生物机体内碳14的“半衰期”为5730年,试推算马王堆古墓的年代.解:设每年按衰减,并设原始含量为1,5730年后含量为.则有
,由题意可知,,.所以按每年%衰减.设马王堆古墓距今年.由题意可得,,.马王堆古墓距今约2193年.小结:在函数知识的应用过程中,关键是如何将实际问题抽象为数学问题,明白数学问题与实际问题之间的关系。处理这一问题,通常分为三步:(1)阅读理解:即读懂题目中的文字叙述所反映的实际背景,领悟其中的数学本质,弄清题中出现的量及其数学含义;(2)根据各个量的关系,进行数学化设计:即建立目标函数,将实际问题转化为数学问题;(3)解决问题:即转化为常规的函数问题或其他常规的数学问题加以解决,通过数学问题的解决来解释生活现象或寻求实际问题的解决方案。
强化解题步骤,在落实的同时,理解不同领域里的两个量关系的不同表达形式10分钟
7分钟四、归纳小结,强化要点(1)解应用题的三个步骤.(2)一个模型.学生回顾本节课的内容,总结出解应用题的步骤及注意事项.教师引导学生完善小结2分钟五、布置作业,延拓课堂思考题:引入中所得的结论“增加了将近个百分点”的数学依据是什么,用所学知识给出一个准确数值,看看与文中的结论是否一致存在争议的问题:对于引入的阅读材料中“以目前一年期定期存款为例分析说,金融机构一年期存款基准利率上调个百分点,由现行的%提高到%。同时,利息税率由20%调减为5%,相当于存款利率增加了将近个百分点。”学生得到两种不同的结论。结论一:经计算相当于存款利率增加了将近个百分点。计算过程:结论二:经计算相当于存款利率增加了将近个百分点。计算过程:学生课下完成讨论对文章的理解不同,参照物不同,导致计算结果不同,结论不同,存在一些争议。1分钟五、教学效果评价1对新课标的基本理念的认识和理解。新课标充分体现了数学的文化价值及数学对社会发展所起的作用。本节课“考古探秘”这一环节就很好的体现了数学学科的文化价值。马王堆古墓及其出土文物对研究中国汉代历史、文化、科学等有着异常珍贵的价值。这个实例本身就“很具有中国特色”,并且能够体现出数学在考古学中的实际应用。既体现了数学应用与文化意识,又体现了数学与其他学科的联系。
2关于几个问题在本节课中的处理。(1)对教材中例1的处理:例1是人口问题,从实际生活看,这是与人们日常生活息息相关的具有可持续发展意义的实际问题;从数学角度看,这是非常典型的指数函数型模型实例。但由于一堂课时间有限,我们在本节课的处理中只渗透思想,涉及增长率模型,并未给出这道例题。(2)本节课我们采用学案导学法,结合学生的特点设计学案,指导学生完成知识的学习过程。通过研究教法,我们发现对于概念多、容量大、综合性高以及复习课适合使用学案导学法授课。使用根据学生认知特点设计的学案,可以指导学生的学习过程,提高课堂效率。在设计学案的过程中,我们就充分考虑了学生的学习情况和特点。如果在学案上给出所有引导问题、例题和探究问题,学生可能会只专注于自己解题,而忽略了老师想要通过例题和提问所给出的基本知识点和重要的思想方法。所以我们在学案的处理上只给出了阅读材料和例题,分层设问的四个问题和考古探秘的实例我们只给出了标题、框架,而没有给出实际内容(可见附1)。这样引导学生首先弄清本节课的基本知识点及基本思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年福建省龙岩市高一上学期期末考试历史试题(解析版)
- 2025-2030中国女性向手游企业竞争策略及运营动态发展研究报告
- 大学昆虫学研究生培养计划
- 抵押动产的正常经营买受人规则适用研究
- 高效的自主招生个人陈述技巧与范文
- 离职手续完结及去向证明书(5篇)
- 餐饮业油脂废弃物回收服务方案计划
- 基于学习进阶理论的高中物理力学核心概念的教学研究
- 中石化兰州分公司员工激励策略优化研究
- 股骨骨折治疗方案
- 2024年7月贵州高中学业水平合格考生物试卷真题(含答案详解)
- 单位空调维修协议书
- 2025-2030年少儿艺术培训行业发展分析及前景趋势与投资研究报告
- 2025AI智算中心基础设施方案白皮书
- 花卉栽培高级工复习考试题库(含答案)
- 2025辽宁中考:英语必考知识点
- 2025年中考物理仿真模拟试卷刷题卷 5套(含答案解析)
- 名著导读《红楼梦》PPT课件(完整版)
- GB∕T 10544-2022 橡胶软管及软管组合件 油基或水基流体适用的钢丝缠绕增强外覆橡胶液压型 规范
- Python编码规范
- 体育——常用队列队形的口令及动作要领
评论
0/150
提交评论