




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.化简的结果是()A.2 B.4 C.2 D.42.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(
)A.8S B.9S C.10S D.11S3.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是()A.两个转盘转出蓝色的概率一样大B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了C.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同D.游戏者配成紫色的概率为4.已知函数的图象与x轴有交点.则的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠35.一个口袋中有红球、白球共10个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机模出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有80次摸到红球,则口袋中红球的个数大约有()A.8个 B.7个 C.3个 D.2个6.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇7.若,则下列等式一定成立的是()A. B. C. D.8.将抛物线向右平移1个单位,再向上平移3个单位,得到的抛物线是()A. B.C. D.9.如图,直线////,若AB=6,BC=9,EF=6,则DE=()A.4 B.6 C.7 D.910.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形二、填空题(每小题3分,共24分)11.如图,港口A在观测站O的正东方向,OA=4.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为____.
12.如图,在△ABC中,∠A=30°,∠B=45°,BC=cm,则AB的长为_____.13.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为_____.14.已知圆的半径是,则该圆的内接正六边形的面积是__________15.如图,点在反比例函数的图象上,轴,垂足为,且,则__________.16.在Rt△ABC中,∠C是直角,sinA=,则cosB=__________17.A、B为⊙O上两点,C为⊙O上一点(与A、B不重合),若∠ACB=100°,则∠AOB的度数为____°.18.如图,在四边形ABCD中,∠ABC=90°,对角线AC、BD交于点O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.(6分)我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长).直线MN垂直于地面,垂足为点P,在地面A处测得点M的仰角为60°,点N的仰角为45°,在B处测得点M的仰角为30°,AB=5米.且A、B、P三点在一直线上,请根据以上数据求广告牌的宽MN的长.(结果保留根号)21.(6分)如图1,在中,,.(1)求边上的高的长;(2)如图2,点、分别在边、上,、在边上,当四边形是正方形时,求的长.22.(8分)某广场有一个小型喷泉,水流从垂直于地面的水管OA喷出,OA长为1.5米.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到O的距离为3米.建立平面直角坐标系,水流喷出的高度y(米)与水平距离x(米)之间近似满足函数关系(1)求y与x之间的函数关系式;(2)求水流喷出的最大高度.23.(8分)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.(1)求抛物线的解析式;(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,,为顶点的三角形与相似?(3)点为直线上一动点,点为抛物线上一动点,是否存在点,,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.24.(8分)如图,为等腰三角形,,是底边的中点,与腰相切于点.(1)求证:与相切;(2)已知,,求的半径.25.(10分)如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC的长26.(10分)已知双曲线经过点B(2,1).(1)求双曲线的解析式;(2)若点与点都在双曲线上,且,直接写出、的大小关系.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据最简二次根式的定义进行化简即可.【详解】故选:A.【点睛】本题考查二次根式的化简,熟练掌握最简二次根式的定义是关键.2、B【解析】分析:由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积.详解:如图所示,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴又∵E是AD中点,∴∴DE:BC=DF:BF=1:2,∴∴又∵DF:BF=1:2,∴∴∴四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.3、D【解析】A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;C、由于A、B两个转盘是相互独立的,先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种,所以游戏者配成紫色的概率为,故选D.4、B【解析】试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.5、A【分析】根据利用频率估计概率可估计摸到红球的概率,即可求出红球的个数.【详解】解:∵共摸了100次球,发现有80次摸到红球,∴摸到红球的概率估计为0.80,∴口袋中红球的个数大约10×0.80=8(个),故选:A.【点睛】本题考查了利用频率估计概率的知识,属于常考题型,掌握计算的方法是关键.6、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、D【分析】根据比例的性质,则ad=bc,逐个判断可得答案.【详解】解:由可得:2x=3yA.,此选项不符合题意B.,此选项不符合题意C.,则3x=2y,此选项不符合题意D.,则2x=3y,正确故选:D【点睛】本题考查比例的性质,解题关键在于掌握,则ad=bc.8、D【分析】由题意可知原抛物线的顶点及平移后抛物线的顶点,根据平移不改变抛物线的二次项系数可得新的抛物线解析式.【详解】解:由题意得原抛物线的顶点为(0,0),∴平移后抛物线的顶点为(1,3),∴得到的抛物线解析式为y=2(x-1)2+3,故选:D.【点睛】本题考查二次函数的几何变换,熟练掌握二次函数的平移不改变二次项的系数得出新抛物线的顶点是解决本题的关键.9、A【分析】根据平行线分线段成比例定理列出比例式,代入数值进行计算即可.【详解】解:∵////,∴,∵AB=6,BC=9,EF=6,∴,∴DE=4故选:A【点睛】本题考查平行线分线段成比例定理,找准对应关系是解答此题的关键.10、C【解析】试题分析:A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误.B、当AB=AD,CB=CD时,无法得到四边形ABCD是菱形,故此选项错误.C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形.∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确.D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.故选C.二、填空题(每小题3分,共24分)11、1【解析】过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=1,再由△ABD是等腰直角三角形,得出BD=AD=1,则AB=AD=1.【详解】如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=1.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB-∠AOB=75°-30°=45°,∴BD=AD=1,∴AB=AD=1.即该船航行的距离(即AB的长)为1.故答案为1.【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.12、【分析】根据题意过点C作CD⊥AB,根据∠B=45°,得CD=BD,根据勾股定理和BC=得出BD,再根据∠A=30°,得出AD,进而分析计算得出AB即可.【详解】解;过点C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=.故答案为:.【点睛】本题考查解直角三角形,熟练应用三角函数的定义是解题的关键.13、15°【分析】根据圆周角和圆心角的关系解答即可.【详解】解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.14、【分析】根据正六边形被它的半径分成六个全等的等边三角形,再根据等边三角形的边长,求出等边三角形的高,再根据面积公式即可得出答案.【详解】解:连接、,作于,等边三角形的边长是2,,等边三角形的面积是,正六边形的面积是:;故答案为:.【点睛】本题考查的是正多边形和圆的知识,解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.15、6【分析】根据三角形的面积等于即可求出k的值.【详解】∵由题意得:=3,解得,∵反比例函数图象的一个分支在第一象限,∴k=6,故答案为:6.【点睛】此题考查反比例函数的比例系数k的几何意义,掌握三角形的特点与k的关系是解题的关键.16、【分析】由题意直接运用直角三角形的边角间关系进行分析计算即可求解得出结论.【详解】解:如图,解:在Rt△ABC中,∵∠C是直角,∴,又∵,∴.【点睛】本题考查直角三角形的边角关系,熟练掌握正弦和余弦所对应的边角关系是解题的关键.17、160°【分析】根据圆周角定理,由∠ACB=100°,得到它所对的圆心角∠α=2∠ACB=200°,用360°-200°即可得到圆心角∠AOB.【详解】如图,∵∠α=2∠ACB,
而∠ACB=100°,
∴∠α=200°,
∴∠AOB=360°-200°=160°.
故答案为:160°.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.18、【分析】过点A作AE⊥BD,由AAS得△AOE≌△COD,从而得CD=AE=3,由勾股定理得DB=4,易证△ABE∽△BCD,得,进而即可求解.【详解】过点A作AE⊥BD,∵CD⊥BD,AE⊥BD,∴∠CDB=∠AED=90°,CO=AO,∠COD=∠AOE,∴△AOE≌△COD(AAS)∴CD=AE=3,∵∠CDB=90°,BC=5,CD=3,∴DB==4,∵∠ABC=∠AEB=90°,∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,∴∠EAB=∠CBD,又∵∠CDB=∠AEB=90°,∴△ABE∽△BCD,∴,∴,∴AB=.故答案为:.【点睛】本题主要考查相似三角形的判定和性质定理,全等三角形的判定和性质以及勾股定理,添加辅助线构造全等三角形,是解题的关键.三、解答题(共66分)19、(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(,)或(,﹣),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得或,则此时P点坐标为(,﹣).综上所述,符合条件的点P的坐标为(,)或(,﹣).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.20、米【分析】设AP=NP=x,在Rt△APM中可以求出MP=x,在Rt△BPM中,∠MBP=30°,求得x,利用MN=MP-NP即可求得答案.【详解】解:∵在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=x,在Rt△BPM中,tan∠MBP=,∵∠MBP=30°,AB=5,∴=,∴x=,∴MN=MP-NP=x-x=.答:广告牌的宽MN的长为米.【点睛】本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.21、(1)9.6;(2).【分析】(1)过点作于点,根据三线合一和勾股定理得BC上的高AM的长,再根据面积法即可解答;(2)设,则,因为可得,再根据相似三角形对应边成比例得,即,从而得解.【详解】解:(1)如图1,过点作于点.∵,∴(三线合一)在中,由勾股定理得.又∵∴(2)如图,设与交于点.∵四边形是正方形∴,,.设,则由可得,从而,即解得∴(本题也可通过,列方程求解)【点睛】本题考查面积法求高、三角形相似的判定与性质的综合应用,是比较经典的题目.22、(1)(2)水流喷出的最大高度为2米【分析】(1)建立平面直角坐标系,待定系数法解题,(2)求出顶点坐标即可.【详解】解:(1)由题意可得,抛物线经过(0,1.5)和(3,0),解得:a=-0.5,c=1.5,即函数表达式为y=.(2)解:∴当x=1时,y取得最大值,此时y=2.答:水流喷出的最大高度为2米.【点睛】本题考查了二次函数的解析式的求法,顶点坐标的应用,中等难度,建立平面直角坐标系是解题关键.23、(1);(2)或时,以点,,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,【分析】(1)根据正方形的性质,可得OA=OC,∠AOC=∠DGE,根据余角的性质,可得∠OCD=∠GDE,根据全等三角形的判定与性质,可得EG=OD=1,DG=OC=2,根据待定系数法,可得函数解析式;(2)分类讨论:若△DFP∽△COD,根据相似三角形的性质,可得∠PDF=∠DCO,根据平行线的判定与性质,可得∠PDO=∠OCP=∠AOC=90,根据矩形的判定与性质,可得PC的长;若△PFD∽△COD,根据相似三角形的性质,可得∠DPF=∠DCO,,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的相似比,可得PC的长;(3)分类讨论:当四边形是平行四边形时,四边形是平行四边形时,四边形是平行四边形时,根据一组对边平行且相等的四边形式平行四边,可得答案.【详解】解:(1)过点作轴于点.∵四边形是边长为2的正方形,是的中点,∴,,.∵,∴.∵,∴.在和中,∴,,.∴点的坐标为.∵抛物线的对称轴为直线即直线,∴可设抛物线的解析式为,将、点的坐标代入解析式,得,解得.∴抛物线的解析式为;(2)①若,则,,∴,∴四边形是矩形,∴,∴;②若,则,∴.∴.∴,∴.∵,∴,∴.∵,∴,,综上所述:或时,以点,,为顶点的三角形与相似:(3)存在,①若以DE为平行四边形的对角线,如图2,此时,N点就是抛物线的顶点(2,),由N、E两点坐标可求得直线NE的解析式为:y=x;∵DM∥EN,∴设DM的解析式为:y=x+b,将D(1,0)代入可求得b=−,∴DM的解析式为:y=x−,令x=2,则y=,∴M(2,);②过点C作CM∥DE交抛物线对称轴于点M,连接ME,如图3,∵CM∥DE,DE⊥CD,∴CM⊥CD,∵OC⊥CB,∴∠OCD=∠BCM,在△OCD和△BCM中,∴△OCD≌△BCM(ASA),∴CM=CD=DE,BM=OD=1,∴CDEM是平行四边形,即N点与C占重合,∴N(0,2),M(2,3);③N点在抛物线对称轴右侧,MN∥DE,如图4,作NG⊥BA于点G,延长DM交BN于点H,∵MNED是平行四边形,∴∠MDE=MNE,∠ENH=∠DHB,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 社会单位消防培训课件
- 二坝初中九年级数学试卷
- 高三学生满分数学试卷
- 肉羊养殖技术课件
- 肉牛屠宰加工技术课件
- 2024年12月恒丰银行烟台分行社会招考笔试历年参考题库附带答案详解
- 龙湖文化培训课件资源
- 2025至2030城市轨道行业市场深度研究与战略咨询分析报告
- 2024年广州市海珠区六中珠江中学招聘教师笔试真题
- 2025至2030不锈钢取石机行业市场深度研究与战略咨询分析报告
- 食品行业质量安全风险管理措施
- 烟草行业的安全知识培训
- 微信缴费合同范本
- 储能站施工组织设计施工技术方案(技术标)
- 餐饮业顾客投诉处理的整改措施
- 《危险房屋鉴定标准JGJ125-2016》
- 网络安全应急响应队伍建设-洞察分析
- DB32∕T 3148-2016 矿渣粉单位产品能源消耗限额
- 虚拟化资源调度策略-洞察分析
- 2018-2024年中国轨道交通智能化系统未来趋势预测分析及投资规划研究建议报告
- 2025年江苏省环保集团招聘笔试参考题库含答案解析
评论
0/150
提交评论