




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
From
transfer
function
to
state
space
modelChapter
4-42007-11-12Outline
of
this
chapterIntroductionDetermination
of
the
overall
transferfunctionSimulation
diagramsSignal
flow
graphFrom
transfer
function
to
state
spacemodelFrom
transfer
function
to
stateChapter
4-42007-11-13space
model
(See
P158,5.9)Parallel
statediagramsfromtransfer
functionParallel
state
diagramDiagonalizing
the
A
matrixUse
of
state
transformation
for
the
state
equationsolutionTransformingintocompanion
formControllable
standard
formObservable
standard
formFrom
block
diagram
to
state
space
modelFrom
transfer
function
to
state
space
model
A
SISO
system
represented
by
the
differential
equation(5.62)
maybe
represented
by
an
overall
transfer
function
of
the
formParallel
state
diagrams(
D
n
aD
n
1n
11w0w
1
(
c
w
D
c
w
1
D
·
c1
D
c
0
)u(5.62)
·
a D
a
)
y w
nw
nsn
sn
1
a sn2n
1
n
2
1
00
a
·
a
s
aY
(s)
G(s)
U
(s)cw
sw
cw1
sw1
·
c
s1
c(5.67)
To
factor
the
denominator
and
express
G(s)
in
partial
fractions,When
there
are
no
repeated
roots
and
w=n:Chapter
4-42007-11-14
i
i
i
inU
(s)f
Z
(s)
fs
iG
(s);
G
(s)
c
G
(s)
n
ii
1
n n
1
1
0
(s
1
)(
s
2
)·(s
n
)c
sn
c
s
n
1
·
c
s
cFrom
transfer
function
to
state
space
modelParallel
state
diagrams0
i
i
i
inU
(s)f
Z
(s)
fs
iG
(s);
G
(s)
c
G
(s)
n
ii
1n n
1
1(s
1
)(
s
2
)·(s
n
)c
sn
c
sn
1
·
c
s
c
The
symbols
zi
and
their
Laplace
transforms
Zi(s)
are
used
for
the
statevariables
in
order
to
distinguish
the
form
of
the
associated
diagonalmatrix.
1
2
·f
U
(
s
)
f
U
(
s
)Y
(
s
)
cnU
(
s
)
s
1
s
2(5.68)z·iiu1+zifiy
i
cnU
(
s
)
f1
Z
1
(
s
)
f
2
Z
2
(
s
)
·
The
state
variables
Zi(s)
are
selected
to
satisfy
this
equation.iiZ
(s)
U
(s)
;sZ
i
(s)
-
i
Zi
(s)
U
(s)s
z·i
i
z
i
uy
i
f
i
z
iChapter
4-42007-11-15From
transfer
function
to
state
space
modelParallel
state
diagrams
The
complete
simulation
diagram
is
drawn
in
Fig.5.31,
P159.
The
initialconditions
of
the
states
zi(t0)
are
omitted
in
the
Fig.,
you
can
add
themyourself.Z1(s)Z2(s)12n:fnf2f1U(s)Y(s)cnFig.5.31
Simulation
of
Eq.(5.67)
byparallelpositionforw=nnZ
(s)FeedforwardpathnG
(s)
cn
Gi
(s)i
1iChapter
4-42007-11-16i
iif
Z
(s)fiU
(s)
s
G
(s)
From
transfer
function
to
state
space
modelParallel
state
diagrams
The
state
space
model
therefore
of
the
formny
f
n
z
u
z
b
uf
·
f
z
c
u
c z
d
u
:z·
1
2
n
n
n
n21:
11
00
:0
·
0
..
.·
01
0(5.70)(5.71)
The
system
matrix
A
appears gonal
or
normal
or
canonical
form(正则型,it
indicated
by
(or
A*),
corresponding
state
variables
are
oftencalled
canonical
variables.Allelements
are
unityw=n,
dn0,
else
dn=0Coefficients
ofthepartial
fractions
For
the
MIMO
system:----b
B,
c
C,
and
d
D.Not
same!Chapter
4-42007-11-17From
transfer
function
to
state
space
modelParallel
state
diagrams
The
diagonal
matrix
A=
means
that
each
state
equation
isuncoupled;
i.e.
each
state
zi
can
be
solved
independently
of
theother
states.
This
fact
simplifies
the
procedure
for
finding
the
state
transitionmatrix
(t).
This
diagonal
form
is
very
useful
for
studying
the
system.,
Ex.,observability
and
controllability.
Transfer
functions
with
repeated
roots
are
not
considered
in
thistextbook.这里讲的系统特征根为各不相同的单根时的正则规范型状态空间描述。是一种最简单的情况。对于存在复根的情况(较少碰到),A阵为约当阵。如P169,5.12所示。此略。有
的同学可
。Chapter
4-42007-11-18From
transfer
function
to
state
space
modelZ1(s)Z2(s)-1-2421Y(s)Fig.5.32
Simulation
diagramfor
exampleofSec.5.9U(s)Parallel
state
diagrams
3
s
2s
24
s
2
15
s
13G
(
s
)
【Ex-1】For
the
givenG(s),draw
the
parallel
statediagram
and
determine
the
state
equation
(See
P160).Solution:
3
s
2s
24
s
2
15
s
13G
(
s
)
1
2s
2
s
1G
(
s
)
4
2z
4uy
11
0
z
1u;
0
1z·
2w=n,
dn
0,
else
dn=0Chapter
4-42007-11-19From
transfer
function
to
state
space
modelParallel
state
diagrams【Ex-2】设控制系统的传递函数为试求系统的正则规范型状态空间描述。s(s2
3s
2
7s
12)s2U
(s)Y
(s)
1
1
2
3
16
s
3
s
3
2
s
4Y
(
s
)
1U
(
s
)解:将系统传递函数化为分母为因式相乘的形式,系统的特征根为0,-3,-4;相应的留数可求得为1
,
2
,
36
3
2即:000
10
3 0
x
1
u0
4
1x·
03
x232
6y
1
因此可得系统的正则规范型状态空间描述:nw<n,
d
=0Chapter
4-42007-11-110From
transfer
function
to
state
space
modelChapter
4-42007-11-111Diagonalizing
the
A
matrix
(see
P160-168.
5.10)In
the
method
of
partial-fraction
expansion
above,
the
desirablenormal
form
of
the
state
equation
is
obtained,
in
which
the
A
matrixis
diagonal.When
the
system
is
MIMO
or
the
system
equations
are
alreadygiven
in
state
form,
this
partial-fraction
expansion
method
is
notconvenient.Section
5.10
presents
a
more
general
method
for
converting
thestate
equation
by
means
of
a
linear
similarity
transformation.Four
methods
are
presented
obtained
the
modal
matrix
T
for
thecase
where
the
matrix
A
has
distinct
eigenvalues(特征值).From
transfer
function
to
state
space
modelState
equation
solution
(see
P168,
5.11)It
is
very
useful
to
transform
a
general
system
matrix
A
to
diagonalform
(or
A*)
in
solving
the
state
equation
(we
have
studied
in
Section3.4
slide).The
state
equation:x(t)
Ax
(t)
Bu(t)(5.112)For
a
non-diagonal
matrix
A,
we
can
diagonalize
it ,
that
meansto
evaluate
the
modal
matrix
T
for
diagonalizing
A.
Then:
diag
[
1
,
2
,.
,
n
]e
t
diag
[e
1
,
e
2
,.
,
e
n
]exp(
At
)
T
exp(
t
)T1Its
solution
is:(5.113)tt00
)dBu
(
)d
Φ(t
)x(0)
Φ(t
)Bu
(x(t
)
e
x(0)
eA
(t
)AtA
TT11
2
n
,
,.,
]
T1AT
diag[eΛt
exp(
T1ATt
)
T1
exp(
At)TChapter
4-42007-11-112From
transfer
function
to
state
space
model,
find
exp(At)
by
method
3
1
5
6
Example-3.
Assuming
matrixand
x(t).A
0Solution:
We
can
find
the
eigenvalues
of
A:1
2,
2
3Since
A
is
not
diagonal
matrix,
it
is
required
to
evualute
the
modalmatrix
for
diagonalizing
A.For
this
example,
A
is
not
in
companion
form,
the
modal
matrix
Tshould
be
evaluated.
Here
using
method
2
given
in
5.10
6
1
2
For
1
2
,
adj
[
2
I
A
]
v
3
6
3
,For
21adj
[
3
I
A
]
v
6 6
2
3T
1/
3
11T
0.5 6
e
2
t
e
3
t1e
2
t
2
e
2
t
3e
3
t6
e
2
t
6
e
3
t
3e
2
t
2
e
3
t00e
3
t
Te
A
t
T
eΛ
t
T
1
T
State
equationsolution
(see
P168,
5.11)Chapter
4-42007-11-113From
transfer
function
to
state
space
model,
find
exp(At)
by
method
3and
x(t).Chapter
4-42007-11-114
1
5
6
Example-3.
Assuming
matrixA
0Solution:
e
T
3
t
2
t
e
3
te
3
t
e
2
t
2e
2
t
3e
6e
3
t6
e
2
t
2e
3
t
3e
2
t
00
T
1:e
A
t
T
e
Λ
t
T
1
t
e
ee
2
t
e
3
t21
3
t
2
t
e
3
t0
2
3
t
2
t
e
3
t0
2
t
2
e
3
t
1
3
ex
(
0
)
x
(
0
)
3
e
2
e
2
t6
e
2
t
6
e
3
t
3
e
2
t
2
e
3
t
2
e
3
ex
(
0
)
x1
(
0
)
3
e
2
e
2
t6
e
2
t
6
e
3
t
1d
2
3
t
6
e
2
6
e
3
)
Bu
(
t
)d
Φ
(
t
)
x
(
0
)
Φ
(
2
e
3
t:
x
(
t
)
3
e
2
tState
equation
solution
(see
P168,
5.11)From
transfer
function
to
state
space
model
The
synthsis
of
feedback
control
systems
and
theysis
oftheir
response
characteristics
is
often
considerably
facilitatedwhen
the
plant
and
control
matrices
in
the
matrix
state
equationhave
particular
forms.
Controllable
standard
form
and
observable
standard
form
areobtained
from
transfer
function
directly
are
introduced.(The
transformation
from
a
physical
or
a
general
state
variablexp
to
the
phase
variable
xc
is
discussed
in
the
Section
5.13).Standard
forms
of
state
equation(see
P172,
5.13)Chapter
4-42007-11-115From
transfer
function
to
state
space
modelAC00
:0
a000:11
0
·0
1:0
·
0
a1
·
an
2
an
1
10
0
:0
BCControllable
Standard
form(可控(相伴)
)w
1
(
c
w
D
w
c
w
1
D
·
c1
D
c
0
)u
a
n
1
D
n
1(
D
n
·
a
1
D
a
0
)
y(5.62)w
nw
n10sn
aY
(s)
G(s)
U
(s)n
2sn
1
an
1w
w1
1
0sn
2
·
a
s
ac
sw
c sw1
·
c
s
c(5.67)
A
SISO
system
represented
by
the
differential
equation(5.62)
maybe
represented
by
an
overall
transfer
function
of
the
formx·
Ac
x
Bc
uy
cc
x
Du注意:下标cCompanion
matrix友矩阵,能控标准形(Ac,bc)(只与A、B有关)Phase
variableChapter
4-42007-11-116From
transfer
function
to
state
space
modelControllable
Standard
form(可控(相伴)
)c
nc
0c
n
1n
2c1c2ca1a02
a
an
2
an
1y
(c0
a0
cn
)c
n
0c
n
0(c1
)
.
(cn
1
an
1cn
)x
[cn
]uy
c0c1
.
c
w
0
.
0
x
cxChapter
4-42007-11-117From
transfer
function
to
state
space
modelControllable
Standard
form(可控(相伴)
)Ex-4请写出
系统的传递函数与可控
.s
4
a3
s3
a2
s
2
a1s
a0G(s)
3
2
1
0
Y
(s)
c
s
3
c
s
2
c
s
cU
(s)x3x2x4x1Y(s)U(s)c1c2c3c0Solution:因为该图以相变量为状态变量,可直接由图写出系统的传递函数与可控
。又因w=3<n=4,故由式(5.67)Chapter
4-42007-11-118From
transfer
function
to
state
space
modelControllable
Standard
form(可控(相伴)
)x
Ac
x
Bc
uy
cc
x
Du
1
0
0
0
bC式中
3
21
01
0001010000
a
a
a
0
aAC4c
0c
c
c0
c1
c
2
c
3
x3x2x4x1Y(s)U(s)c1c2c3c0s
4G(s)
3
2
1
0
Ex-4请写出
系统的传递函数与可控
.Y
(s)
c
s
3
c
s
2
c
s
cU
(s)
a3
s3
a2
s
2
a1s
a0Chapter
4-42007-11-1192007-11-1From
transfer
function
to
state
space
modelObservable
Standard
form(可观(相伴)
)w
nU
(s)
an
2sn
sn
1
asn
2n
1
G(s)
w
w11
0Y
(s)
c
sw
csw1·
c
s
c·
a
s1
a
0
(5.67)
Another
important
state
equation
form
is
observable
standard
form.ny
x2x·
a
1
y
c
1
u:x·n
a
n
1
y
c
n
1
u1x·
a
0
y
c
0
ux·
Ao
x
Bo
uy
co
x
Dux·1
a0
y
c0
u
a
0
xn
(c0
a0
cn
)ux·2
a1
y
c1u
a1
xn
(c1
)u:x·n
an
1
y
cn
1u
an
1
xn
(cn
1
an
1cn
)uU(s)x·1x2x3yx·2x·3x·4c2c3c1x1c0c4x4w
n
,
c
n
0
y
x
n
c
n
u21From
transfer
function
to
state
space
modelObservable
Standard
form(可观(相伴)
)w
n
asn
sn
1
an
1
n
20Y
(s)
G(s)
U
(s)cw
sw
cw1
sw1
·
c
s1
c(5.67)x·
Ao
x
Bo
uy
co
x
Dusn
2
·
a
s
a1
0注意:式中的下标Owhere01
an
1
Ao
0
;010
·
0
a
0
0
·
0
a1
·
0
a
2;
;
;0
·
1co
0
0
·
0
1能观标准形(Ao,Co)(只与A、C有关)Chapter
4-4
Another
important
state
equation
form
is
observable
standard
form.nD
c
ac c
B
c
a
c
n1
n1
n
o
2 2
n
c0
c1
a1cn
;w
n
,
c
n
0w
n
,
c
n
0
0
0
;
;
w
c
c0
Bo
D
0From
transfer
function
to
state
space
modelObservable
Standard
form(可观(相伴)
)Ex-5
请写出系统的状态空间表达式2
0
a3
0
0
0
a0
0
0
a
11
0
a
0
0
1A
1oco
0
0
0
1
2
c3
c1
c
c0
BoD
0x1U(s)1x又x2x3x4=yx又23x又x又4c3c2c1c0w
n
,
c
4
01
4
1
1x又
a
x
x
c
u22
2x又3
a2
x4
x
cux又
a3
x4
x3
c3u41
0
4x又
a
x
c0uy
x4Solution:Chapter
4-42007-11-122From
transfer
function
to
state
space
model01sn
an2sn1
an1sn1
cG(s)
n
n1
n2
1
0sn2
…
a
s
ac
sn
c
sn2
…
c
s
c已知传递函数为:x·
Ao
x
Bo
uy
co
x
Dux·
Ac
x
Bc
uy
cc
x
Du可控可观仔细观察两种规范型中的系统矩阵A、控制矩阵B以及输出矩阵C,可以发现可控
与可观
之间存在关系:Ao
(
Ac
)TCo
(Bc
)TBo
(Cc
)T这是普遍规律?可控(相伴)与可观(相伴)Yes!Chapter
4-42007-11-123From
transfer
function
to
state
space
model可控(相伴)与可观(相伴)【例6】设控制系统的传递函数为s2Y
(s)
3s
2进而可得系统的可控
状态空间表达式为
00
x1
0
1
x
0
u2
2
1012
7
x3
1
x1
y
[2 3
1]
x
2
x3
x·1
x·
0x·3
0U
(s)
s(s2
7s
12)试求系统的可控规范型状态空间描述。解:将系统传递函数对照可控规范型公式,可得w
2
,
n
3
,
c
3
0
,
c
2
1,
c1
2a
3
1,
a
2
7
,
a
1
12
,
a
0
0Chapter
4-42007-11-124From
transfer
function
to
state
space
model1
00
x1
0
21
x
0
u2
1012
7
x3
1
x
y
[2 3
1]
x
2
x3
x·1
x·
0
x·3
0可控(相伴)与可观(相伴)【例7】设控制系统的传递函数为s
2U
(s)
s(s
2
7s
12)Y
(s)
3s
2
20
0
0
00
12
x
3
u1
7
1x·
1y
0
0
1x可控试求系统的可观规范型状态空间描述。解:将系统传递函数对照可观规范型公式,因为w
2
,
n
3
,
c
3
0
,
c
2
1,
c
1
2a
3
1,
a
2
7
,
a
1
12
,
a
0
0进而可得系统的可观
状态空间表达式为Chapter
4-42007-11-125Block
diagramState
equation
model由一般的方块图直接得到状态方程Chapter
4-42007-11-126From
transfer
function
to
state
space
model方法一:环节规范化设一阶环节:1U
(s)
Ts
1G(s)
Y
(s)
?ks
aG(s)
ux·因为一个控制系统的方块图主要由比例环节。积分环节、一阶滞后环节(惯性环节)、二阶振荡环节等基本环节所组成,要将其改画成状态变量图是很方便的,只要把其中的一阶惯性环节和二阶振荡环节,按图示的方式改画成局部状态变量图就可以了。U(s)x·
1
x
1
uT
T
xChapter
4-42007-11-127From
transfer
function
to
state
space
model方法一:环节规范化设二阶环节:G
(
s
)
Y
(
s
)
U
(
s
)1T
2
s
2
2
Ts
1UU(s)x又1x又2=x121
1T
2Tx又
2
x
1xx又2
x1
uChapter
4-42007-11-128From
transfer
function
to
state
space
model方法二:直接从方块图计算从已知的控制系统方块图中,选择一阶环节的输出变量作为状态变量,经直接计算将方块图化为状态变量图,从而可得系统的状态空间表达式。【例8】已知如下系统,状态变量如图示,请写出状态空间表达式并画出状态变量图。R(s)Y(s)x1x2x322s
144s
110.5sChapter
4-4-2911-1From
transfer
function
to
state
space
model方法二:直接从方块图计算R(s)Y(s)x1x2x322s
144s
110.5s
1解:由图中的状态变量,可写出:232(R
X
(s))2s
1X
(s)
421X
(s)4s
1X
(s)
113X
(s)0.5s
1X
(s)
Y
(s)
X1
(s)21
14x·
1
x
x2Chapter
4-42007-11-130322x·
1
x
x
rx·3
2x1
2x3y
x1From
transfer
function
to
state
space
model例8的状态变量图方法二:直接从方块图计算x1yx21/s-1/4rx31/s-1/21/s2-2x3x1R(s)Y(s)x1x2x322s
144s
110.5s
121
14x又
1
x
x3Chapter
4-42007-11-1312
22x又
1
x
x
rx又3
2x1
2x3y
x1From
transfer
function
to
state
space
model方法二:直接从方块图计算问题:例8的状态变量信号流图?例8的状态变量图x1yx21/s-1/4rx31/s-1/21/s2-2x3x1
00
2
2
10
14
1
1
x
1
rx.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政管理经济法专注考点试题及答案
- 市政工程考试趋势与未来展望及试题及答案
- 行政管理与经济法教育试题及答案
- 酒店管理服务培训合作协议
- 物流管理与供应链知识测试卷
- 通信技术与网络应用知识考点
- 行政管理经济法热点追踪试题及答案汇编
- 经济师学术与实务结合试题及答案
- 优化药品使用管理的工作思路计划
- 宿舍门标设计
- 核电站入厂安全培训课件
- 陕旅版五年级英语上册句型词汇知识点总结
- 汉字构字的基本原理和识字教学模式分析
- 围术期过敏反应诊治的专家共识(全文)
- 2013年俄语专业四级历年真题详解
- 论中学语文教师美学素养的培养
- 送货单ECEL模板
- RouterOS介绍
- 十字轴锻造成型工艺及模具设计毕业论文
- 模切检验标准
- 保洁员工考勤表
评论
0/150
提交评论