




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分类•利用深度学习对于传统问答方法的改进•基于深度学习的End2End模型逻辑表达式实体识别关系分类实体消歧e11e9e10e12e2e1e3e4e7e5e6e8Similarity的老婆的国籍是?SemanticParsing问句深度学习对于传统知识库问答方法的改进利用深度学习对于传统问答方法的改进•DL-based关系模板识别•Yinh
et
al.
Semantic
Parsing
via
StagedQuery
Graph
Generation:
QuestionAnswering
wit owledge
Bas,
InProceedings
of
ACL
2015
(OutstandingP
r)Zeng
et
al.
Relation
Classification
viaConvolutional
Deep
Neural
Network,
inProceedings
of
COLING
2014
(BestP
r)Zeng
et
al,
Distant
Supervision
for
RelationExtraction
via
Piecewise
ConvolutionalNeural
Networks,
in
Proceedings
of
EMNLP2015Xu
et
al.
Classifying
Relations
via
LongShort
Term
Memory
Networks
alongShortest
Dependency
Paths,
InProceedings
of
EMNLP
2015•••实体识别关系分类实体消歧逻辑表达式Staged
Query
Graph
Generation
(Yinhet
al.
ACL
2015)•问答过程:基于结构化的问句语义表达(Lambda演算)在知识图谱匹配最优子图Family
Guycvt2Meg
GriffinLacey
Chabert1/31/1999cvt1fromcvt3series12/26/1999Mila
KunisWhovoiced
Meg
on
Family
Guy?argmin(x.Actor(x
,Family
_Guy)Voice(x
,Meg
_Griffin),x.casttime(x
))Query
GraphWhovoiced
Meg
on
FamilyGuy?Constraints
&
Aggregationstopic
entitycore
inferential
chainThis
example
comes
from
Yinh’s
Slides
in
2015Linking
TopicEntityFamily
Guys1Meg
Griffins2s0ϕWhovoiced
Megon
Family
Guy?Entity
LinkingStep1:Lexicon-based
candidate
Generation(
anchor
texts,
redirect
pages
and
others)Step2:
Selecting
entities
by
usingStructured
Learning
(Top
10)This
example
comes
from
Yinh’s
Slides
in
2015Identify
Core
Inferential
ChainFamily
Guys1Family
Guycastactorxys3Family
Guywriterstartxys4Family
Guygenrexs5Whovoiced
Megon
Family
Guy?Whovoiced
Megon
Family
Guy?{cast−actor,
writer−start,genre}2
steps
ify
isa
CVT-node1step
ify
is
a
non-CVT-nodeThis
example
comes
from
Yinh’s
Slides
in
2015Using15K15K15K15K15K100010001000.........max...300...<s>w1
w2…wT
</s>max...max...300word
hash:“cat”
—>
“#ca”,”cat”,
“at#”Whovoiced
Meg
on
Family
Guy?Cast-Actor1p(r
|q)
1
exp(cos(er
,eq
))r
qrexp(cos(e
,e
))“cat”
—>[0….1..1….0….1….0]Argument
ConstraintsWhovoiced
Megon
Family
Guy?Family
GuycastactorxyFamily
GuycastactorxyMeg
GriffinFamily
GuyxyMeg
Griffinargmins3s6s7Using
rulestoadd
constraintsonthe
core
inferential
chainIf
x
is
a
entity,
it
can
be
added
asentity
nodeIf
x
is
such
keywords,
like
“
”,“latest”,
it
could
be
added
asaggregation
constraints.This
example
comes
from
Yinh’s
Slides
in
2015RankingWhovoiced
Meg
onFamilyGuy?…Ranking•Log
Linear
ModelMain
Features:•••Topic
Entity:
Entity
LinkingScoreCore
Inferential
Chain:Relation
MatchingScore(NN-based
model)Constraints:
Keyword
andentity
matchingResults•Be ark:
WebQuestions5,810
Q-APairs
fromDownload:query
logAvg.
F1(Accuracy)
onWebQuestions
Test
Set35.737.539.239.941.344.345.3333020100[VALUE]405060Yao-14Berant-13Bao-14Bordes-14bBerant-14-14Yao-15Wang-14Yih-15Key:
Relation
ClassificationWhovoiced
Megon
Family
Guy?{cast−actor,
writer−start,genre}LabeledTraining
DataFeatureRepresentationTraditional
Feature
Representation传统特征提取需要NLP预处理+人工设计的特征The
[haft]e1
of
the
[axe]e2
is
made
of
yew
woodWords:
haft,
of ,the ,
axem11
b1
b2
21Entity
Type:
OBJECTm1
,
PRODUCTm2Parse
Tree:
OBJECT-NP-PP-PRODUCTKernel
Feature:问题1:对于缺少NLP处理工具和资源的语言,无法提取文本特征问题2:NLP处理工具引入的“错误累积”Component-Whole(e1,e2)Traditional
FeaturesRelation
Identification
based
on
DeepConvolutionalNeural
Network
(Zeng
et
al
COLING
2014)The
[haf.]eof
.he
[axe]e2
is
made
of
1ew
wood.Component(Whole(e1,e2)Lexical
LevelFeatures:捕捉词本身的语义信息Sentence
Level
Features:捕捉所在句子的上下文信息Lexical
Level
FeaturesThe[ha']e1ofthe
[axe]e2
is
made
of
yew
wood.0.5
,
0.2,
-0.1,
0.40.1
,
0.3,
-.01,
0.40.1
,-0.3,
0.1,
0.4L1L2L3L4L5Sentence
Level
FeaturesconvolutionallayerSentence
Level
FeaturesS:
[People]
have
been
moving
backinto
[downtown]
.-24WF:PF:max
pooling:output:Classification
LayerSoftmax实验结果•SemEval-2010
Task
8实验表明, 所提出方法在需要NLP预处理和人工设计复杂特征前提下,能够有效提升实体关系分类性能Long
Shortest
Memory
Network
Along
ShortestSyntactic
Path
(Xu
et
al.
EMNLP
2015)“A
trilliongallons
ofwaterhave
been
poured
into
an
empty
region
ofouter
spaceResults小结•已有DL方法对于问答的改进仍然基于传统知识库问答的基本流程•仍然是基于符号表示语义关系识别: 、LSTM-RNNEnd2End
based
QAEnd2Ende11e9e10e12e2e1e3e4e5e6e7e8的老婆的国籍是?matchingProgress•Bordes
et
al.
Open
Question
Answering
with
Weakly
SupervisedEmbedding
Models,
In
Proceedings
of
ECML-PKDD
14Basic
SystemBordes
et
al.
Question
Answering
with
Subgraph
Embedding,
InProceedings
of
EMNLP
14Contextual
Information
of
Answerset
al.
Joint
Relational
Embeddings
for
Knowledge-BasedQuestion
Answering,
In
Proceedings
of
EMNLP
2014Entity
TypeDong
et
al.
Question
Answerin er
Freebase
with
Multi-ColumnConvolutional
Neural
Network,
In
Proceedings
of
ACL
2015Topic
Entity、Relation
Path、Contextual
InformationBordes
et
al.
Large-scale
Simple
Question
Answering
with
MemoryNetwork,
In
Proceedings
of
ICIR
2015Memory
Network••••Basic
End2End
QA
System(Bordes
et
al.2014)•目前只处理单关系(Single
Relation)的问句(Simple
Question)基本步骤••Step1:候选生成•利用Entity
Linking找到main
entity在KB中main
entity周围的entity均是候选••Step2:候选排序e11e9e10e12e2e1e3e4e7e5e6e8的老婆的国籍是?matchingBasic
End2End
QA
System(Bordes
et
al.
2014)w
qk
ig(qi
)
E(ek
)ek
ti的老婆的国籍是?matchingf
(qi
)
E(wk
)Object:L
0.1
S(
f
(q),
g(t))
S(
f
(q),
g(t))S(
f
(q),
g(t))
f
(q)T
g(t)S(
f
(q),
g(t))
f
(q)T
Mg(t)Multitask
learning
with
paraphrases:S
(
f
(q),
f
(q
))
f
(q)T
f
(q
)p
p
pcandidatee2e1r1e3e4r2r3r4ResultsConsidering
More
Info
(Bordes
et
al.
2014)•Entity
Information•Path
to
entities
in
question•Subgraph
of
the
answers
(contextual
Info)candidatee1e2e3e4r1r2r3r4entity
in
qpathr5e5S(q,a)
f
(q)T
g(a)e6g(qi
)
ek
Context(ti
)E(ek
)E(rk
)rk
Context(ti
)g(qi
)
E(ek
)E(rk
)ek
Path(ti
)rk
Path(ti
)E(ek
)ResultsMulti-Column
(Dong
et
al.
2015)依据问答特点,考虑答案不同维度的信息Answer
TypeAnswer
ContextAnswer
Pathe3e4r4entity
in
qr5e5r3e1e6r1pathtypeanswere2Frameworkwhen
didAvatar
release
in
UKResultsNeural
Attention-based
Neural
Model
for
QA
withCombining
Global
Knowledge
Information(Zhang
et
al.
2016)问题问句表示已有方法多采用WordEmbedding的平均对于问句进行语义表示,问句表示过于简单关注答案不同的部分,问句的表示应该是不一样的知识表示受限于训练语料未考虑全局信息Neural
Attention-based
Neural
Model
for
QA
withCombining
Global
Knowledge
Information(Zhang
et
al.
2016)Neural
Attention-based
Neural
Model
for
QA
withCombining
Global
Knowledge
Information(Zhang
et
al.
2016)Neural
Attention-based
Neural
Model
for
QA
withCombining
Global
Knowledge
Information(Zhang
et
al.
2016)融入全局信息利用TransE得到knowledge
embeddingMulti-taskLearningTransEExperimental
Resultsentity:
Slovakiatype:
/location/countryrelation:
partially/containedbycontext:
/m/04dq9kf,
/m/01mp…小结•基于DL的End2End问答基于检索框架,其
是计算知识库中实体、关系与当前问句在语义向量空间中的语义相似度需要依据知识库问答的任务特点设计神经网络(实体类型、语义关系、上下文结构)目前,End2End问答仍只能解决Simple(单关系)类型的问题对于复杂问题、推理性问题还有待解决Comparison
on
WebQuestionF133logisticRegression35StructuredPerception35.7DCS37.5MT32AverageEmbedding39.2Subgraph
Embedding39.9NLG+embedding41.3Relation+Embedding44.3Question
Graph
+
LR40.845.8MT+Relation+Embedding52.5Query
Graph
+
RerankingEnd-End
DL-based
SystemsTraditional
Methods
Promoted
by
DLTraditionalMethods42.2Memory
Network42.6Attention
ModelJoint
Learning
+
Answer
ValidationDong
Yao+Yao2014aFader2014Berant2013Bao
Bordes2014
2014aBordes2014bBerant2014
2014Yao2014b20152015Yih
Bordes2015
2015Zhang2016Xu201653.3参考公开的评测数据集Reference[Zelle,
1995]
J.
M.
Zelle
and
R.
J.
Mooney,
“Learning
to
parse
database
queries
using
inductive
logic
programming,”
in
Proceedings
of
the
NationalConference
on
Artificial
In ligence,
1996,
pp.
1050–1055.[Wong,
2007]
Y.
W.
Wong
and
R.
J.
Mooney,
“Learning
synchronous
gram-mars
for
semantic
parsing
with
lambda
calculus,”
in
Proceedings
of
the
45thAnnual
Meeting-Association
for
computational
Linguistics,
2007.[Lu,
2008]
W.
Lu,
H.
T.
Ng,
W.
S.
Lee,
and
L.
S.
Zettlemoyer,
“A
generative
model
for
parsing
natural
language
to
meaning
representations,”
inProceedings
of
the
2008
Conference
on
Empirical
Methods
in
Natural
Language
Processing,
2008,
pp.
783–792.[Zettlemoyer,
2005]
L.
S.
Zettlemoyer
and
M.
Collins,
“Learning
to
map
sentences
to
logical
form:
Structured
classification
with
probabilistic
categorialgrammars,”
in
Proceedings
of
the
21st
Uncertainty
in
Artificial
In ligence,
2005,
pp.
658–666.[Clarke,
2010]
J.
Clarke,
D.
Goldwasser,
M.-W.
Chang,
and
D.
Roth,
“Driving
semantic
parsing
from
the
world’s
response,”
inProceedings
of
the
14thConference
on
Computational
Natural
Language
Learning,
2010,
pp.
18–27[Liang,
2011]
P.
Liang,
M.
I.
Jordan,
and
D.
Klein,
“Learning
dependency-based
compositional
semantics,”
in
Proceedings
of
the
49th
Annual
Meeting
ofthe
Association
for
Computational
Linguistics:
Human
LanguageTechnologies-Volume
1,
2011,
pp.
590–599.[Cai,
2013]Qingqing
Cai
and
Alexander
Yates.
2013.
Large-scale
semantic
parsing
via
schemamatching
and
lexicon
extension.
In
ACL.[Berant,
2013]Jonathan
Berant,
Andrew
Chou,
Roy
Frostig,
and
Percy
Liang.
2013.
Semantic
parsing
on
freebase
fromquestion-answer
pairs.
In
EMNLP.[Yao,
2014]
Xuchen
Yao
and
Benjamin
Van
Durme.
2014.
Information
extraction
over
structureddata:
Questionanswering
with
freebase.In
ACL.[Unger,
2012]
Christina
Unger,
Lorenz
B¨
uhmann,
Jens
Lehmann,
Axel-Cyrille
Ngonga
Ngomo,
Daniel
Gerber,
and
Philipp
Cimiano.
2012.
Template-based
question
answerin errdf
data.
In
WWW.[Yahya,
2012] med
Yahya,
Klaus
Berberich,
Shady
Elbas-suoni,
Maya
Ramanath,
Volker
Tresp,
and
Gerhard
Weikum.
2012.
Natural
languagequestions
for
the
web
ofdata.
In
EMNLP.[He,
2014]
S.He,
K.
Liu,
Y.
Zhang,
L.
Xu,
and
J.
Zhao.
2014.
Question
answerin er
linked
data
using
-order
logic.
InEMNLP.[Artzi,
2011]Y.
Artzi
and
L.
Zettlemoyer.
2011.
Bootstrap- semantic
parsers
from
conversations.
In
Empirical
Methods
in
Natural
Language
Processing(EMNLP),
pages
421–432.
Dan
Goldwasser,
Roi
Reichart,
James
Clarke
and
Dan
Roth.
Confidence
Driven
Unsupervised
Semantic
Parsing.Proceedings
of
ACL
(2011)[Krishnamurthy,
2012]
Jayant
Krishnamurthy
and
Tom
M.
Mitc .
Weakly
Supervised
Training
of
Semantic
Parsers.
In
Proceedings
of
the
2012Conference
on
Empirical
Methods
in
Natural
Language
Processing
and
Computational
Natural
Language
Learning
(EMNLP-CoNLL),
2012[Reddy,
2014]
S.
Reddy,
M.
Lapata,
and
M.
Steedman.
2014.
Large-scale
semantic
parsing
without
question-answer
pairs.
Transactions
of
theAssociation
forCompu-tational
Linguistics
(TACL),2(10):377–392.[Fader,
2013]
A.
Fader,
L.
S.
Zettlemoyer,
and
O.
Etzioni,
“Paraphrase-driven
learning
for
open
question
answering.”
in
Proceedings
of
the
51th
AnnualMeeting-Association
for
computational
Linguistics,
2013,
pp.
1608–1618.Reference[Bordes,
2014a]
Antoine
Bordes,
Jason
Weston,
and
Nicolas
Usunier,
"Open
Question
Answering
with
Weakly
Supervised
Embedding
Models",
In
Proceedings
of
ECML-PKDD,
2014.[Bordes,
2014b]
Antoine
Bordes,
Sumit
Chopra,
and
Jason
Weston,
"Question
Answering
with
Subgraph
Embedding",
In
Proceedings
of
EMNLP
2014.[ ,
2014]Min-Chul ,
Nan
Duan,
Ming
Zhou,
and
Hae-Chang
Rim,
"Joint
Relational
Embeddings
for
Knowledge-Based
Question
Answering",
In
Proceedings
of
EMNLP
2014.[Dong,
2015]
Li
Dong,
Furu
Wei,
Ming
Zhou,
and
Ke
Xu,
"Question
Answerin er
Freebasewith
Multi-Column
Convolutional
Neural
Network",
In
Proceedings
of
ACL
2015.[Bordes,
2015]
Antoine
Bordes,
Nicolas
Usunier,
Sumit
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CSMT-DZ 002-2023便携式微型计算机摄像头通用规范
- T/CIQA 39-2022检验检测机构网络安全工作指南
- T/CHES 76-2022水利工程白蚁灯光诱杀技术导则
- T/CHCA 019-2023盾构渣土处理技术指南
- T/CGS 002-2021电性源短偏移距瞬变电磁法勘探技术规程
- T/CGCC 38-2019焙烤食品网络销售及经营规范
- T/CECS 10291-2023硅墨烯不燃保温板
- T/CECS 10049-2019绿色建材评价石膏装饰材料
- T/CCT 014-2024气流床干煤粉气化用煤
- T/CBJ 6101-2024绍兴东路酒生产技术规范
- DB61T1755-2023放心消费示范创建认定与管理规范
- 企业借款申请书
- 乙醇管施工方案
- 项目七 信息素养与社会责任
- 电气施工安全技术交底记录范本
- 说课稿【全国一等奖】
- 急性扁桃体炎临床诊疗指南
- 第七讲 社会主义现代化建设的教育科技人才战略PPT习概论2023优化版教学课件
- 室间质评记录表
- SG-T048-结构吊装施工记录
- (部编)五年级语文下册选择题练习(1-8单元)
评论
0/150
提交评论