




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列各组图形中,一定相似的是()A.任意两个圆B.任意两个等腰三角形C.任意两个菱形D.任意两个矩形2.抛物线y=﹣3(x﹣1)2+3的顶点坐标是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)3.方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定4.抛物线向左平移1个单位,再向下平移1个单位后的抛物线解析式是()A. B.C. D.5.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形6.小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1.他核对时发现所抄的c比原方程的c值小2.则原方程的根的情况是()A.不存在实数根 B.有两个不相等的实数根C.有一个根是x=-1 D.有两个相等的实数根7.如图,是的直径,点,在上,若,则的度数为()A. B. C. D.8.己知a、b、c均不为0,且,若,则k=()A.-1 B.0 C.2 D.39.若2y-7x=0,则x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶410.由二次函数可知()A.其图象的开口向下 B.其图象的对称轴为直线C.其顶点坐标为 D.当时,随的增大而增大二、填空题(每小题3分,共24分)11.从地面竖直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)的关系式是h=30t﹣5t2,小球运动中的最大高度是_____米.12.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.13.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是_____.14.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.15.如图,中,,,将斜边绕点逆时针旋转至,连接,则的面积为_______.16.大润发超市对去年全年每月销售总量进行统计,为了更清楚地看出销售总量的变化趋势,应选用________统计图来描述数据.17.从,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.18.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=122°,则∠C=_______.三、解答题(共66分)19.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.20.(6分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),(1)求该抛物线的解析式;(2)抛物线的对称轴上是否存在一点M,使ΔACM的周长最小?若存在,请求出点M的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SΔPAB=8,并求出此时点21.(6分)如图,AD是⊙O的弦,AC是⊙O直径,⊙O的切线BD交AC的延长线于点B,切点为D,∠DAC=30°.(1)求证:△ADB是等腰三角形;(2)若BC=,求AD的长.22.(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.23.(8分)为响应市政府关于“垃圾不落地市区更美丽”的主题宣传活动,郑州外国语中学随机调查了部分学生对垃圾分类知识的掌握情况,调查选项分为“A:非常了解;B:比较了解;C:了解较少;D:不了解”四种,并将调查结果绘制成以下两幅不完整的统计图请根据图中提供的信息,解答下列问题;求______,并补全条形统计图;若我校学生人数为1000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有______名;已知“非常了解”的是3名男生和1名女生,从中随机抽取2名向全校做垃圾分类的知识交流,请画树状图或列表的方法,求恰好抽到1男1女的概率.24.(8分)如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线;(3)若⊙O的半径为5,sinB=,求DE的长.25.(10分)解方程:(l)(2)(配方法).26.(10分)阅读理解:如图,在纸面上画出了直线l与⊙O,直线l与⊙O相离,P为直线l上一动点,过点P作⊙O的切线PM,切点为M,连接OM、OP,当△OPM的面积最小时,称△OPM为直线l与⊙O的“最美三角形”.解决问题:(1)如图1,⊙A的半径为1,A(0,2),分别过x轴上B、O、C三点作⊙A的切线BM、OP、CQ,切点分别是M、P、Q,下列三角形中,是x轴与⊙A的“最美三角形”的是.(填序号)①ABM;②AOP;③ACQ(2)如图2,⊙A的半径为1,A(0,2),直线y=kx(k≠0)与⊙A的“最美三角形”的面积为,求k的值.(3)点B在x轴上,以B为圆心,为半径画⊙B,若直线y=x+3与⊙B的“最美三角形”的面积小于,请直接写出圆心B的横坐标的取值范围.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据相似图形的性质,对各选项分析判断即可得出答案.【详解】A、任意两个圆,一个圆放大或缩小后能够与另外一个圆重合,所以任意两个圆一定是相似图形,故选A.B、任意两个等腰三角形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误.D、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误.故选A.【点睛】本题考查了相似图形的概念,灵活运用相似图形的性质是解题的关键.2、D【分析】直接根据顶点式的特点求顶点坐标.【详解】解:∵y=﹣3(x﹣1)2+3是抛物线的顶点式,∴顶点坐标为(1,3).故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).3、A【分析】此题考查一元二次方程解的情况的判断.利用判别式来判断,当时,有两个不等的实根;当时,有两个相等的实根;当时,无实根;【详解】题中,所以次方程有两个不相等的实数根,故选A;4、B【分析】根据向左平移横坐标减,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:由“左加右减、上加下减”的原则可知,把抛物线向左平移1个单位,再向下平移1个单位,则平移后的抛物线的表达式为y=.故选B.【点睛】本题主要考查了二次函数图象与几何变换,掌握二次函数图象与几何变换是解题的关键.5、D【分析】根据等腰三角形的性质、直角三角形的性质和相似三角形的判定方法即可判定.【详解】解:两个直角三角形不一定相似,因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似,因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似,因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似,因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.【点睛】本题考查了等腰三角形和直角三角形的性质以及相似三角形的判定,属于基础题型,熟练掌握相似三角形的判定方法是关键.6、A【分析】直接把已知数据代入进而得出c的值,再解方程求出答案.【详解】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=-1,
∴(-1)2-4+c=0,
解得:c=3,∵所抄的c比原方程的c值小2.
故原方程中c=5,即方程为:x2+4x+5=0
则b2-4ac=16-4×1×5=-4<0,
则原方程的根的情况是不存在实数根.
故选:A.【点睛】此题主要考查了方程解的定义和根的判别式,利用有根必代的原则正确得出c的值是解题关键.7、C【分析】先根据圆周角定理求出∠ACD的度数,再由直角三角形的性质可得出结论.【详解】∵,∴∠ABD=∠ACD=40°,∵AB是⊙O的直径,
∴∠ACB=90°.
∴∠BCD=∠ACB-∠ACD=90°-40°=50°.
故选:C.【点睛】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.8、D【解析】分别用含有k的代数式表示出2b+c,2c+a,2a+b,再相加即可求解.【详解】∵∴,,三式相加得,∵∴k=3.故选D.【点睛】本题考查了比的性质,解题的关键是求得2b+c=ak,2c+a=bk,2a+b=ck.9、A【分析】由2y-7x=0可得2y=7x,再根据等式的基本性质求解即可.【详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【点睛】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.10、B【分析】根据二次函数的图像与性质即可得出答案.【详解】A:a=3,所以开口向上,故A错误;B:对称轴=4,故B正确;C:顶点坐标为(4,-2),故C错误;D:当x<4时,y随x的增大而减小,故D错误;故答案选择D.【点睛】本题考查的是二次函数,比较简单,需要熟练掌握二次函数的图像与性质.二、填空题(每小题3分,共24分)11、1【分析】首先理解题意,先把实际问题转化成数学问题后,知道解此题就是求出h=30t﹣5t2的顶点坐标即可.【详解】解:h=﹣5t2+30t=﹣5(t2﹣6t+9)+1=﹣5(t﹣3)2+1,∵a=﹣5<0,∴图象的开口向下,有最大值,当t=3时,h最大值=1.故答案为:1.【点睛】本题考查了二次函数的应用,解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果.12、(,).【分析】连接PQ、OP,如图,根据切线的性质得PQ⊥OQ,再利用勾股定理得到OQ=,利用垂线段最短,当OP最小时,OQ最小,然后求出OP的最小值,得到OQ的最小值,于是得到结论.【详解】连接PQ、OP,如图,∵直线OQ切⊙P于点Q,∴PQ⊥OQ,在Rt△OPQ中,OQ==,当OP最小时,OQ最小,当OP⊥直线y=2时,OP有最小值2,∴OQ的最小值为=.设点Q的横坐标为a,∴S△OPQ=×=×2×|a,∴a=,∴Q点的纵坐标==,∴Q点的坐标为(,),故答案为(,).【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.13、【分析】列表得出所有等可能结果,从中找到两个球颜色相同的结果数,利用概率公式计算可得.【详解】解:列表如下:黄红红红(黄,红)(红,红)(红,红)红(黄,红)(红,红)(红,红)白(黄,白)(红,白)(红,白)由表知,共有9种等可能结果,其中摸出的两个球颜色相同的有4种结果,所以摸出的两个球颜色相同的概率为,故答案为.【点睛】本题考查了列表法与树状图的知识,解题的关键是能够用列表或列树状图将所有等可能的结果列举出来,难度不大.14、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°15、8【分析】过点B'作B'E⊥AC于点E,由题意可证△ABC≌△B'AE,可得AC=B'E=4,即可求△AB'C的面积.【详解】解:如图:过点B'作B'E⊥AC于点E∵旋转∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC≌△B'AE(AAS)∴AC=B'E=4∴S△AB'C=故答案为:.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,利用旋转的性质解决问题是本题的关键.16、折线【解析】试题解析:根据题意,得要求清楚地表示销售总量的总趋势是上升还是下降,结合统计图各自的特点,应选用折线统计图,17、【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:.故答案为.点睛:知道“从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键.18、26°【分析】连接OD,如图,根据切线的性质得∠ODC=90°,即可求得∠ODA=32°,再利用等腰三角形的性质得∠A=32°,然后根据三角形内角和定理计算即可.【详解】连接OD,如图,
∵CD与⊙O相切于点D,
∴OD⊥CD,
∴∠ODC=90°,
∴∠ODA=∠CDA-90°=122°-90°=32°,
∵OA=OD,
∴∠A=∠ODA=32°,
∴∠C=180°-∠ADC+∠A=180°-122°-32°=26°.
故答案为:.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.三、解答题(共66分)19、(1)水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8);(2)为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内;(3)扩建改造后喷水池水柱的最大高度为米.【解析】分析:(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.详解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣(x﹣3)2+5=.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+.∵该函数图象过点(16,0),∴0=﹣×162+16b+,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+,∴扩建改造后喷水池水柱的最大高度为米.点睛:本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.20、(1)y=x2﹣2x﹣1;(2)存在;M(1,﹣2);(1)(1+22,4)或(1﹣22,4)或(1,﹣4).【解析】(1)由于抛物线y=x2+bx+c与x轴交于A(-1,0),B(1,0)两点,那么可以得到方程x2+bx+c=0的两根为x=-1或x=1,然后利用根与系数即可确定b、c的值;(2)点B是点A关于抛物线对称轴的对称点,在抛物线的对称轴上有一点M,要使MA+MC的值最小,则点M就是BC与抛物线对称轴的交点,利用待定系数法求出直线BC的解析式,把抛物线对称轴x=1代入即可得到点M的坐标;(1)根据S△PAB=2,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标.【详解】(1)∵抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(1,0)两点,∴方程x2+bx+c=0的两根为x=﹣1或x=1,∴﹣1+1=﹣b,﹣1×1=c,∴b=﹣2,c=﹣1,∴二次函数解析式是y=x2﹣2x﹣1.(2)∵点A、B关于对称轴对称,∴点M为BC与对称轴的交点时,MA+MC的值最小,设直线BC的解析式为y=kx+t(k≠0),则3k+t=0t=-3,解得:k=1∴直线AC的解析式为y=x﹣1,∵抛物线的对称轴为直线x=1,∴当x=1时,y=﹣2,∴抛物线对称轴上存在点M(1,﹣2)符合题意;(1)设P的纵坐标为|yP|,∵S△PAB=2,∴12AB•|yP∵AB=1+1=4,∴|yP|=4,∴yP=±4,把yP=4代入解析式得,4=x2﹣2x﹣1,解得,x=1±22,把yP=﹣4代入解析式得,﹣4=x2﹣2x﹣1,解得,x=1,∴点P在该抛物线上滑动到(1+22,4)或(1﹣22,4)或(1,﹣4)时,满足S△PAB=2.【点睛】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,二次函数的对称轴上点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题.21、(1)见解析;(2)AD=1.【分析】(1)根据切线的性质和等腰三角形的判定证明即可;(2)根据含10°角的直角三角形的性质解答即可.【详解】(1)证明:连接OD,∵∠DAC=10°,AO=OD∴∠ADO=∠DAC=10°,∠DOC=60°∵BD是⊙O的切线,∴OD⊥BD,即∠ODB=90°,∴∠B=10°,∴∠DAC=∠B,∴DA=DB,即△ADB是等腰三角形.(2)解:连接DC∵∠DAC=∠B=10°,∴∠DOC=60°,∵OD=OC,∴△DOC是等边三角形∵⊙O的切线BD交AC的延长线于点B,切点为D,∴BC=DC=OC=,∴AD=.【点睛】本题考查切线的判定和性质,解题的关键是根据切线的性质和等腰三角形的判定,以及勾股定理进行解题.22、米.【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:,解得:,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飞行的最高高度为:米.【点睛】本题考核知识点:二次函数的应用.解题关键点:熟记二次函数的基本性质.23、(1)20(2)500(3)【解析】先利用A选项的人数和它所占百分比计算出调查的总人数为50,再计算出B选项所占的百分比为,从而得到,即,然后计算出C、D选项的人数,最后补全条形统计图;用1000乘以可估计该校“非常了解”与“比较了解”的学生数;画树状图展示所有12种等可能的结果数,找出抽到1男1女的结果数,然后根据概率公式求解.【详解】调查的总人数为,B选项所占的百分比为,所以,即,C选项的人数为人,D选项的人数为人,条形统计图为:故答案为20;,所以估计该校“非常了解”与“比较了解”的学生共有500名;故答案为500;画树状图为:共有12种等可能的结果数,其中抽到1男1女的结果数为6,所以恰好抽到1男1女的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率也考查了统计图.24、(1)见解析;(2)见解析;(3).【解析】(1)连接AD,根据圆周角定理得到AD⊥BC,根据线段垂直平分线的性质证明;(2)连接OD,根据三角形中位线定理得到OD∥AC,得到DE⊥OD,证明结论;(3)解直角三角形求得AD,进而根据勾股定理求得BD、CD,据正弦的定义计算即可求得.【详解】(1)证明:如图,连接AD,∵AB是⊙O的直径,∴AD⊥BC,又DC=BD,∴AB=AC;(2)证明:如图,连接OD,∵AO=BO,CD=DB,∴OD是△ABC的中位线,∴OD∥AC,又DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线;(3)解:∵AB=AC,∴∠B=∠C,∵⊙O的半径为5,∴AB=AC=10,∵sinB==,∴AD=8,∴CD=BD==6,∴sinB=sinC==,∴DE=.【点睛】本题考查的是圆周角定理、切线的判定定理以及三角形中位线定理,掌握相关的性质定理和判定定理是解题的关键.25、(1);(2)【分析】(1)利用因式分解法求解;(2)在左右两边同时加上一次项系数-8的一半的平方后配方,再开方,即可得出两个一元一次方程,即可求解.【详解】解:(1),,,∴或,所以;(2)∵,∴,即,则,∴.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城市生活垃圾分类知识竞赛试题(附含答案)
- 2025年安全员考试考试彩蛋押题及参考答案详解(培优B卷)
- 2024年事业单位工勤技能考试题库附参考答案详解【A卷】
- 2024粮油食品检验人员每日一练试卷(重点)附答案详解
- 2024安全员考试能力提升B卷题库附答案详解(夺分金卷)
- 2025鄂州职业大学单招《语文》考试综合练习
- 2025火电电力职业鉴定练习题【B卷】附答案详解
- 2025年重庆职称考试试题及答案
- 2024银行岗位经典例题【突破训练】附答案详解
- 2025海洋资源共同开发合同
- 2025山东东营公安招录辅警392人考试参考试题及答案解析
- 2025四川宜宾市退役军人事务局招聘临聘人员2人考试参考题库及答案解析
- 高考语文 热点04 现代文阅读II之理论与文本互证类题(解析版)
- 第十三章 三角形 单元测试卷(含答案) 2025-2026学年人教版八年级数学上册
- 预制混凝土检查井采购合同模板
- 2025年司法局招聘司法所协理员历年考试试题与答案
- 右江盆地低温金、锑矿床热液石英:显微结构与地球化学特征的成矿密码
- 致敬 9.3:一场阅兵一部民族精神史诗
- 小学学校“十五五”(2026-2030)发展规划
- (完整版)室外散水专项方案
- 中职高教版(2023)语文职业模块-第五单元:走近大国工匠(一)展示国家工程-了解工匠贡献【课件】
评论
0/150
提交评论