2022-2023学年湖北省十堰市第六中学数学九年级上册期末检测模拟试题含解析_第1页
2022-2023学年湖北省十堰市第六中学数学九年级上册期末检测模拟试题含解析_第2页
2022-2023学年湖北省十堰市第六中学数学九年级上册期末检测模拟试题含解析_第3页
2022-2023学年湖北省十堰市第六中学数学九年级上册期末检测模拟试题含解析_第4页
2022-2023学年湖北省十堰市第六中学数学九年级上册期末检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.解方程,选择最适当的方法是()A.直接开平方法 B.配方法 C.公式法 D.因式分解法2.关于的方程的根的情况,正确的是().A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.如图,AD是的一条角平分线,点E在AD上.若,,则与的面积比为()A.1:5 B.5:1 C.3:20 D.20:34.把抛物线向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为()A. B.C. D.5.等腰三角形底角与顶角之间的函数关系是()A.正比例函数 B.一次函数 C.反比例函数 D.二次函数6.如图,⊙O的弦AB⊥OC,且OD=2DC,AB=,则⊙O的半径为()A.1 B.2 C.3 D.97.的半径为5,圆心O到直线l的距离为3,则直线l与的位置关系是A.相交 B.相切 C.相离 D.无法确定8.若点是反比例函数图象上一点,则下列说法正确的是()A.图象位于二、四象限B.当时,随的增大而减小C.点在函数图象上D.当时,9.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD•AC D.10.若反比例函数的图象在每一条曲线上都随的增大而减小,则的取值范围是()A. B. C. D.11.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=20°,AD=CD,则∠DAC的度数是()A.30° B.35° C.45° D.70°12.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在矩形中,,点分别在矩形的各边上,,则四边形的周长是______________.14.已知是方程的两个实数根,则的值是____.15.函数中自变量x的取值范围是________.16.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是___________17.若点、在二次函数的图象上,则的值为________.18.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为_____.三、解答题(共78分)19.(8分)解方程:(公式法)20.(8分)已知为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ并延长交AC于点F,试证明:FC(AC+EC)为定值.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).⑴在平面直角坐标系中画出△ABC关于原点对称的△A1B1C1;⑵把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.请写出:①旋转角为度;②点B2的坐标为.22.(10分)问题呈现:如图1,在边长为1小的正方形网格中,连接格点A、B和C、D,AB和CD相交于点P,求tan∠CPB的值方法归纳:求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形,观察发现问题中∠CPB不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点B、E,可得BE∥CD,则∠ABE=∠CPB,连接AE,那么∠CPB就变换到Rt△ABE中.问题解决:(1)直接写出图1中tanCPB的值为______;(2)如图2,在边长为1的正方形网格中,AB与CD相交于点P,求cosCPB的值.23.(10分)如图,圆的内接五边形ABCDE中,AD和BE交于点N,AB和EC的延长线交于点M,CD∥BE,BC∥AD,BM=BC=1,点D是的中点.(1)求证:BC=DE;(2)求证:AE是圆的直径;(3)求圆的面积.24.(10分)已知:点和是一次函数与反比例函数图象的连个不同交点,点关于轴的对称点为,直线以及分别与轴交于点和.(1)求反比例函数的表达式;(2)若,求的取值范围.25.(12分)已知关于x的一元二次方程x2+x+m﹣1=1.(1)当m=1时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.26.如图,在中,∠A=90°,AB=12cm,AC=6cm,点P沿AB边从点A开始向点B以每秒2cm的速度移动,点Q沿CA边从点C开始向点A以每秒1cm的速度移动,P、Q同时出发,用t表示移动的时间.(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

参考答案一、选择题(每题4分,共48分)1、D【解析】根据方程含有公因式,即可判定最适当的方法是因式分解法.【详解】由已知,得方程含有公因式,∴最适当的方法是因式分解法故选:D.【点睛】此题主要考查一元二次方程解法的选择,熟练掌握,即可解题.2、A【分析】根据一元二次方程根的判别式,即可得到方程根的情况.【详解】解:∵,∴,∴原方程有两个不相等的实数根;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握根的判别式.3、C【分析】根据已知条件先求得S△ABE:S△BED=3:2,再根据三角形相似求得S△ACD=S△ABE=S△BED,根据S△ABC=S△ABE+S△ACD+S△BED即可求得.【详解】解:∵AE:ED=3:2,

∴AE:AD=3:5,

∵∠ABE=∠C,∠BAE=∠CAD,

∴△ABE∽△ACD,

∴S△ABE:S△ACD=9:25,

∴S△ACD=S△ABE,

∵AE:ED=3:2,

∴S△ABE:S△BED=3:2,

∴S△ABE=S△BED,

∴S△ACD=S△ABE=S△BED,

∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,

∴S△BDE:S△ABC=3:20,

故选:C.【点睛】本题考查了相似三角形的判定和性质,不同底等高的三角形面积的求法等,等量代换是本题的关键.4、A【解析】试题解析:抛物线的顶点坐标为(0,0),把点(0,0)先向右平移1个单位,再向上平移1个单位后得到的点的坐标为(1,1),所以所得的抛物线的解析式为y=(x-1)2+1.故选B.考点:二次函数图象与几何变换5、B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.6、C【分析】根据垂径定理可得AD=AB,由OD=2DC可得OD=OC=OA,利用勾股定理列方程求出OA的长即可得答案.【详解】∵⊙O的弦AB⊥OC,AB=,∴AD=AB=,∵OD=2DC,OA=OC,OC=OD+DC,∴OD=OC=OA,∴OA2=(OA)2+()2,解得:OA=3,(负值舍去),故选:C.【点睛】本题主要考查垂径定理及勾股定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧;熟练掌握垂径定理是解题关键.7、A【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.8、B【分析】先根据点A(3、4)是反比例函数y=图象上一点求出k的值,求出函数的解析式,由此函数的特点对四个选项进行逐一分析.【详解】∵点A(3,4)是反比例函数y=图象上一点,

∴k=xy=3×4=12,

∴此反比例函数的解析式为y=,

A、因为k=12>0,所以此函数的图象位于一、三象限,故本选项错误;

B、因为k=12>0,所以在每一象限内y随x的增大而减小,故本选项正确;

C、因为2×(-6)=-12≠12,所以点(2、-6)不在此函数的图象上,故本选项错误;

D、当y≤4时,即y=≤4,解得x<0或x≥3,故本选项错误.

故选:B.【点睛】此题考查反比例函数图象上点的坐标特点,根据题意求出反比例函数的解析式是解答此题的关键.9、D【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【详解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选D.【点睛】点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.10、A【分析】根据反比例函数的图象和性质,当反比例函数y的图象的每一条曲线上,y都随x的增大而减小,可知,k﹣1>0,进而求出k>1.【详解】∵反比例函数y的图象的每一条曲线上,y都随x的增大而减小,∴k﹣1>0,∴k>1.故选:A.【点睛】本题考查了反比例函数的图象和性质,对于反比例函数y,当k>0时,在每个象限内,y随x的增大而减小;当k<0时,在每个象限内,y随x的增大而增大.11、B【分析】连接BD,如图,利用圆周角定理得到∠ADB=90°,∠DBC=∠BAC=20°,则∠ADC=110°,然后根据等腰三角形的性质和三角形内角和计算∠DAC的度数.【详解】解:连接BD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DBC=∠BAC=20°,∴∠ADC=90°+20°=110°,∵DA=DC,∴∠DAC=∠DCA,∴∠DAC=(180°﹣110°)=35°.故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12、A【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】14400000=1.44×1.故选:A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题(每题4分,共24分)13、【分析】根据矩形的对角线相等,利用勾股定理求出对角线的长度,然后根据平行线分线段成比例定理列式表示EF、EH的长度之和,再根据四边形EFGH是平行四边形,即可得解.【详解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,∴四边形EFGH的周长=,故答案为:.【点睛】本题考查了平行线分线段成比例定理、矩形的对角线相等和勾股定理,根据平行线分线段成比例定理得出是解题的关键,也是本题的难点.14、1【分析】根据一元二次方程根与系数的关系可得出,,再代入中计算即可.【详解】解:∵是方程的两个实数根,∴,,∴,故答案为:1.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟知:若是一元二次方程的两个根,则,.15、x≥-1且x≠1.【分析】根据二次根式的被开方数非负和分式的分母不为0可得关于x的不等式组,解不等式组即可求得答案.【详解】解:根据题意,得,解得x≥-1且x≠1.故答案为x≥-1且x≠1.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,难度不大,属于基础题型.16、【解析】试题解析:∵AB为直径,∴∠ACB=90°,∵AC=BC=,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=AC=1,∴S阴影部分=S扇形AOC=.【点睛】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.本题考查了扇形面积的计算:圆面积公式:S=πr2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法;②和差法;③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.17、-1【分析】利用抛物线的对称性得到点A和点B为抛物线上的对称点,根据二次函数的性质得到抛物线的对称轴为直线x=−2,从而得到m−(−2)=−2−(−3),然后解方程即可.【详解】∵点A(−3,n)、B(m,n),∴点A和点B为抛物线上的对称点,∵二次函数的图象的对称轴为直线x=−2,∴m−(−2)=−2−(−3),∴m=−1.故答案为:−1.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.18、k=【解析】试题分析:如图:作CD⊥x轴于D,则OB∥CD,∴△AOB∽△ADC,∴,∵AB=AC,∴OB=CD,由直线y=kx﹣3(k≠0)可知B(0,﹣3),∴OB=3,∴CD=3,把y=3代入y=(x>0)解得,x=4,∴C(4,3),代入y=kx﹣3(k≠0)得,3=4k﹣3,解得k=,故答案为.考点:反比例函数与一次函数的交点问题.三、解答题(共78分)19、【分析】先确定a,b,c的值和判别式,再利用求根公式求解即可.【详解】解:这里,,,,.即【点睛】本题考查了一元二次方程的解法,熟练掌握公式法解方程是本题的关键.20、(1)(3﹣m,0);(2);(3)见解析【分析】(1)AO=AC−OC=m−3,用线段的长度表示点A的坐标;(2)是等腰直角三角形,因此也是等腰直角三角形,即可得到OD=OA,则D(0,m−3),又由P(1,0)为抛物线顶点,用待定系数法设顶点式,计算求解即可;(3)过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标为,运用相似比求出FC,EC长的表达式,而AC=m,代入即可.【详解】解:(1)由B(3,m)可知OC=3,BC=m,∴AC=BC=m,OA=m﹣3,∴点A的坐标为(3﹣m,0)(2)∵∠ODA=∠OAD=45°∴OD=OA=m﹣3,则点D的坐标是(0,m﹣3)又抛物线的顶点为P(1,0),且过B、D两点,所以可设抛物线的解析式为:得:∴抛物线的解析式为:(3)证明:过点Q作QM⊥AC与点M,过点Q作QN⊥BC与点N,设点Q的坐标为,则∵QM∥CE∴△PQM∽△PEC则∵QN∥FC∴△BQN∽△BFC则又∵AC=m=4∴即为定值8【点睛】本题主要考查了点的坐标,待定系数法求二次函数解析式,相似三角形的判定与性质,合理做出辅助线,运用相似三角形的性质求出线段的长度是解题的关键.21、⑴详见解析;⑵①90;②(6,2)【分析】(1)分别得到点A、B、C关于x轴的对称点,连接点A1,B1,C1,即可解答;

(2)①根据点A,B,C的坐标分别求出AC,BC,AC的长度,根据勾股定理逆定理得到∠CAB=90°,即可得到旋转角;

②根据旋转的性质可知AB=AB2=3,所以CB2=AC+AB2=5,所以B2的坐标为(6,2).【详解】解:(1)A(3,2)、B(3,5)、C(1,2)关于x轴的对称点分别为A1(3,-2),B1(3,-5),C1(1,-2),

如图所示,

(2)①∵A(3,2)、B(3,5)、C(1,2),

∴AB=3,AC=2,BC=,∴,

∵AB2+AC2=13,

∴AB2+AC2=BC2,

∴∠CAB=90°,

∵AC与AC2的夹角为∠CAC2,

∴旋转角为90°;

②∵AB=AB2=3,

∴CB2=AC+AB2=5,

∴B2的坐标为(6,2).【点睛】本题考查了轴对称及旋转的性质,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点.22、(1)2;(2)【分析】(1)根据平行四边形的判定及平行线的性质得到∠CPB=∠ABE,利用勾股定理求出AE,BE,AB,证明△ABE是直角三角形,∠AEB=90°,即可求出tanCPB=tanABE;(2)如图2中,取格点D,连接CD,DM.通过平行四边形及平行线的性质得到∠CPB=∠MCD,利用勾股定理的逆定理证明△CDM是直角三角形,且∠CDM=90°,即可得到cos∠CPB=cos∠MCD.【详解】解:(1)连接格点B、E,∵BC∥DE,BC=DE,∴四边形BCDE是平行四边形,∴DC∥BE,∴∠CPB=∠ABE,∵AE=,BE=,AB=,∴△ABE是直角三角形,∠AEB=90°,∴tan∠CPB=tan∠ABE=,故答案为:2;(2)如图2所示,取格点M,连接CM,DM,∵CB∥AM,CB=AM,∴四边形ABCM是平行四边形,∴CM∥AB,∴∠CPB=∠MCD,∵CM=,CD=,MD=,,∴△CDM是直角三角形,且∠CDM=90°,∴cos∠CPB=cos∠MCD=.【点睛】本题考查三角形综合题、平行线的性质、勾股定理及勾股定理逆定理、直角三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会用转化的思想思考问题.23、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据平行线得出∠DCE=∠CEB,求出即可;(2)求出AB=BC=BM,得出△ACB和△BCM是等腰三角形,求出∠ACE=90°即可;(3)根据求出∠BEA=∠DAE=22.5°,∠BAN=45°,求出BN=1,,根据勾股定理求出AE2的值,即可求出答案.【详解】(1)证明:∵CD∥BE,∴∠DCE=∠CEB,∴,∴DE=BC;(2)证明:连接AC,∵BC∥AD,∴∠CAD=∠BCA,∴,∴AB=DC,∵点D是的中点,∴,∴CD=DE,∴AB=BC.又∵BM=BC,∴AB=BC=BM,即△ACB和△BCM是等腰三角形,在△ACM中,,∴∠ACE=90°,∴AE是圆的直径;(3)解:由(1)(2)得:,又∵AE是圆的直径,∴∠BEA=∠DAE=22.5°,∠BAN=45°,∴NA=NE,∴∠BNA=∠BAN=45°,∠ABN=90°,∴AB=BN,∵AB=BM=1,∴BN=1,∴.由勾股定理得:AE2=AB2+BE2=,∴圆的面积.【点睛】本题主要考察正多边形与圆、勾股定理、平行线的性质,解题关键是根据勾股定理求出AE2的值.24、(1);(2)或.【分析】(1)将点A(-1,-4)代入反比例函数解析式,即可得m的值;(2)分两种情况讨论:当P在第一象限或第三象限时,过点作于点,交x轴于点,,通过相似的性质求出AC的长,然后求出点P的坐标,求出一次函数的解析式,即可求出k的取值范围.【详解】解:(1)将点A(-1,-4)代入反比例函数解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论