下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上的函数的周期为4,当时,,则()A. B. C. D.2.展开式中x2的系数为()A.-1280 B.4864 C.-4864 D.12803.已知,,,则a,b,c的大小关系为()A. B. C. D.4.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3 B.4 C.5 D.65.在直角坐标平面上,点的坐标满足方程,点的坐标满足方程则的取值范围是()A. B. C. D.6.已知曲线的一条对称轴方程为,曲线向左平移个单位长度,得到曲线的一个对称中心的坐标为,则的最小值是()A. B. C. D.7.如图,双曲线的左,右焦点分别是直线与双曲线的两条渐近线分别相交于两点.若则双曲线的离心率为()A. B.C. D.8.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.9.集合,,则()A. B. C. D.10.若复数z满足,则复数z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是()A. B.4 C.2 D.12.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量,且,则______14.若,则________,________.15.如图是一个算法流程图,若输出的实数的值为,则输入的实数的值为______________.16.某高校开展安全教育活动,安排6名老师到4个班进行讲解,要求1班和2班各安排一名老师,其余两个班各安排两名老师,其中刘老师和王老师不在一起,则不同的安排方案有________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?18.(12分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.19.(12分)如图,矩形和梯形所在的平面互相垂直,,,.(1)若为的中点,求证:平面;(2)若,求四棱锥的体积.20.(12分)第7届世界军人运动会于2019年10月18日至27日在湖北武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项,329个小项.共有来自100多个国家的近万名现役军人同台竞技.前期为迎接军运会顺利召开,武汉市很多单位和部门都开展了丰富多彩的宣传和教育活动,努力让大家更多的了解军运会的相关知识,并倡议大家做文明公民.武汉市体育局为了解广大民众对军运会知识的知晓情况,在全市开展了网上问卷调查,民众参与度极高,现从大批参与者中随机抽取200名幸运参与者,他们得分(满分100分)数据,统计结果如下:组别频数5304050452010(1)若此次问卷调查得分整体服从正态分布,用样本来估计总体,设,分别为这200人得分的平均值和标准差(同一组数据用该区间中点值作为代表),求,的值(,的值四舍五入取整数),并计算;(2)在(1)的条件下,为感谢大家参与这次活动,市体育局还对参加问卷调查的幸运市民制定如下奖励方案:得分低于的可以获得1次抽奖机会,得分不低于的可获得2次抽奖机会,在一次抽奖中,抽中价值为15元的纪念品A的概率为,抽中价值为30元的纪念品B的概率为.现有市民张先生参加了此次问卷调查并成为幸运参与者,记Y为他参加活动获得纪念品的总价值,求Y的分布列和数学期望,并估算此次纪念品所需要的总金额.(参考数据:;;.)21.(12分)在中,角A,B,C的对边分别是a,b,c,且向量与向量共线.(1)求B;(2)若,,且,求BD的长度.22.(10分)设函数,.(Ⅰ)讨论的单调性;(Ⅱ)时,若,,求证:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【题目详解】定义在上的函数的周期为4,当时,,,,.故选:A.【答案点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.2、A【答案解析】
根据二项式展开式的公式得到具体为:化简求值即可.【题目详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:化简得到-1280x2故得到答案为:A.【答案点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.3、D【答案解析】
与中间值1比较,可用换底公式化为同底数对数,再比较大小.【题目详解】,,又,∴,即,∴.故选:D.【答案点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较.4、B【答案解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解:记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).5、B【答案解析】
由点的坐标满足方程,可得在圆上,由坐标满足方程,可得在圆上,则求出两圆内公切线的斜率,利用数形结合可得结果.【题目详解】点的坐标满足方程,在圆上,在坐标满足方程,在圆上,则作出两圆的图象如图,设两圆内公切线为与,由图可知,设两圆内公切线方程为,则,圆心在内公切线两侧,,可得,,化为,,即,,的取值范围,故选B.【答案点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.6、C【答案解析】
在对称轴处取得最值有,结合,可得,易得曲线的解析式为,结合其对称中心为可得即可得到的最小值.【题目详解】∵直线是曲线的一条对称轴.,又..∴平移后曲线为.曲线的一个对称中心为..,注意到故的最小值为.故选:C.【答案点睛】本题考查余弦型函数性质的应用,涉及到函数的平移、函数的对称性,考查学生数形结合、数学运算的能力,是一道中档题.7、A【答案解析】
易得,过B作x轴的垂线,垂足为T,在中,利用即可得到的方程.【题目详解】由已知,得,过B作x轴的垂线,垂足为T,故,又所以,即,所以双曲线的离心率.故选:A.【答案点睛】本题考查双曲线的离心率问题,在作双曲线离心率问题时,最关键的是找到的方程或不等式,本题属于容易题.8、C【答案解析】
根据椭圆的定义可得,,再利用余弦定理即可得到结论.【题目详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【答案点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.9、A【答案解析】
计算,再计算交集得到答案.【题目详解】,,故.故选:.【答案点睛】本题考查了交集运算,属于简单题.10、A【答案解析】
化简复数,求得,得到复数在复平面对应点的坐标,即可求解.【题目详解】由题意,复数z满足,可得,所以复数在复平面内对应点的坐标为位于第一象限故选:A.【答案点睛】本题主要考查了复数的运算,以及复数的几何表示方法,其中解答中熟记复数的运算法则,结合复数的表示方法求解是解答的关键,着重考查了推理与计算能力,属于基础题.11、B【答案解析】
设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【题目详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,
,
当且仅当三点共线时,取“=”号,∴的最小值为.
故选:B.【答案点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.12、C【答案解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【题目详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【答案点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、0.1【答案解析】
根据原则,可得,简单计算,可得结果.【题目详解】由题可知:随机变量,则期望为所以故答案为:【答案点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.14、【答案解析】
根据诱导公式和二倍角公式计算得到答案.【题目详解】,故.故答案为:;.【答案点睛】本题考查了诱导公式和二倍角公式,属于简单题.15、【答案解析】
根据程序框图得到程序功能,结合分段函数进行计算即可.【题目详解】解:程序的功能是计算,若输出的实数的值为,则当时,由得,当时,由,此时无解.故答案为:.【答案点睛】本题主要考查程序框图的识别和判断,理解程序功能是解决本题的关键,属于基础题.16、156【答案解析】
先考虑每班安排的老师人数,然后计算出对应的方案数,再考虑刘老师和王老师在同一班级的方案数,两者作差即可得到不同安排的方案数.【题目详解】安排6名老师到4个班则每班老师人数为1,1,2,2,共有种,刘老师和王老师分配到一个班,共有种,所以种.故答案为:.【答案点睛】本题考查排列组合的综合应用,难度一般.对于分组的问题,首先确定每组的数量,对于其中特殊元素,可通过“正难则反”的思想进行分析.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【答案解析】
设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【题目详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【答案点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.18、(1)(2)(ⅰ)见解析(ⅱ)点的坐标为.【答案解析】
(1)由题意得,再由的关系求出,即可得椭圆的标准方程;(2)(i)设,的中点为,,设直线的方程为,代入椭圆方程中,运用根与系数的关系和中点坐标公式,结合三点共线的方法:斜率相等,即可得证;(ii)利用两点间的距离公式及弦长公式将表示出来,由换元法的对勾函数的单调性,可得取最小值时的条件获得等量关系,从而确定点的坐标.【题目详解】解:(1)由题意得,,所以,所以椭圆方程为(2)设,的中点为,(ⅰ)证明:由,可设直线的方程为,代入椭圆方程,得,所以,所以,则直线的斜率为,因为,所以,所以三点共线,所以平分线段;(ii)由两点间的距离公式得由弦长公式得所以,令,则,由在上递增,可得,即时,取得最小值4,所以当取最小值时,点的坐标为【答案点睛】此题考那可是椭圆方程和性质,主要考查椭圆方程的运用,运用根与系数的关系和中点坐标公式,同时考查弦长公式,属于较难题.19、(1)见解析(2)【答案解析】
(1)设EC与DF交于点N,连结MN,由中位线定理可得MN∥AC,故AC∥平面MDF;(2)取CD中点为G,连结BG,EG,则可证四边形ABGD是矩形,由面面垂直的性质得出BG⊥平面CDEF,故BG⊥DF,又DF⊥BE得出DF⊥平面BEG,从而得出DF⊥EG,得出Rt△DEG~Rt△EFD,列出比例式求出DE,代入体积公式即可计算出体积.【题目详解】(1)证明:设与交于点,连接,在矩形中,点为中点,∵为的中点,∴,又∵平面,平面,∴平面.(2)取中点为,连接,,平面平面,平面平面,平面,,∴平面,同理平面,∴的长即为四棱锥的高,在梯形中,,∴四边形是平行四边形,,∴平面,又∵平面,∴,又,,∴平面,.注意到,∴,,∴.【答案点睛】求锥体的体积要充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解,注意求体积的一些特殊方法——分割法、补形法、等体积法.①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.20、(1),,;(2)详见解析.【答案解析】
(1)根据频率分布表计算出平均数,进而计算方差,从而X~N(65,142),计算P(51<X<93)即可;(2)列出Y所有可能的取值,分布求出每个取值对应的概率,列出分布列,计算期望,进而可得需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB 5135.2-2025自动喷水灭火系统第2部分:湿式报警阀、延迟器、水力警铃
- 2025年中国餐饮行业ESG实践报告
- 干洗店服务合同(衣物保价·破损赔付版)
- 2025年保险销售岗年终保单成交总结与客户留存报告
- 2026-2031年中国PCB盖垫板市场调研分析及投资战略研究报告
- 岳池县酉溪镇人民政府关于公开招聘社区专职网格员的备考题库含答案详解(综合题)
- 2025陕西宝鸡市眉县招聘社区专职工作人员10人备考题库及答案详解(易错题)
- 2026上海公共服务徐汇区社区工作者招录86人备考题库 (第三批)含答案详解(典型题)
- 2026年中国邮政储蓄银行河北分行秋季校园招聘备考题库含答案详解(典型题)
- 2025年嘉兴桐乡市总工会招聘工会社会工作者6人备考题库附答案详解(完整版)
- 维修项目实施方案及可行性
- DAT42-2009企业档案工作规范
- 高负荷小区优化流程
- 教学主张公开课一等奖课件省课获奖课件
- 运用PDCA循环规范管理出院小结及持续改进案例
- 左传简介完整
- DB11T 1322.69-2019安全生产等级评定技术规范 第69部分:畜禽养殖场
- 辛亥革命博物馆
- 煤业公司各级各岗位人员职业病防治制汇编
- 六年级语文 阅读理解专项训练(含答案)
- 大学英语四、六级考试身份证明(模板)
评论
0/150
提交评论