


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!13.5逆命题与逆定理第3课时教学目标【知识与能力】掌握角平分线的性质定理和判定定理,能灵活运用角平分线的性质定理和判定定理解题.【过程与方法】让学生通过自主探索,运用逻辑推理的方法证明关于角平分线的重要结论,并体会感性认识与理性认识之间的联系与区别.【情感态度价值观】通过认识的升华,使学生进一步理解数学,也使学生关注数学、热爱数学.教学重难点【教学重点】角平分线的性质定理和判定定理,能灵活运用角平分线的性质定理和判定定理解题.【教学难点】灵活运用角平分线的性质定理和判定定理解题.课前准备无教学过程一、创设情景,导入新课角是轴对称图形吗?它的对称轴是什么?如图,点P是∠AOB的角平分线OC上的任一点,且PD⊥OA于D,PE⊥OB于E,将∠AOB沿OC对折你发现了什么?如何表达,并简述你的证明过程.二、师生互动,探究新知在学生交流发言的基础上,老师板书:角平分线的性质定理,即角平分线上的点到角两边的距离相等.几何推理为:∵OP平分∠AOB,PD⊥OA于D,PE⊥OB于E,∴PD=PE.教师指出条件中不能漏掉PD⊥OA于点D,PE⊥OB于点E.巩固练习教材P98第1题.教师提问:你能写出这个性质定理的逆命题吗?它是不是真命题?学生完成并回答.下面我们一起来证明这个定理,见教材P97.教师指出:角平分线是一条射线,那么这个逆定理应如何表述?学生讨论并发言.在学生发言基础上教师归纳总结,并板书:角的内部到角两边距离相等的点在角的角平分线上.巩固练习教材P98第2题.三、随堂练习,巩固新知1.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,则PC与PD的大小关系是()A.PC>PDB.PC=PDC.PC<PD D.不能确定2.如图等腰△ABC中,AC=BC,CD⊥AB,DE⊥AC,DF⊥BC,则DEDF(填=,>或).
【答案】1.B2.=四、典例精析,拓展新知【例1】如图,在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分线,DE⊥BC于E,且BC=8cm,求△DEC的周长.【答案】因为BD平分∠ABC,DE⊥BC,∠A=90°,所以DA=DE(角平分线上的点到这个角的两边的距离相等),所以DC+DE=DC+DA=AC.在Rt△ABD≌Rt△EBD,所以AB=BE.又因为AB=AC,所以AC=BE,所以DC+DE+EC=AC+EC=BE+EC=BC,所以△DEC的周长为8cm.【教学说明】作意三角形三个角平分线都交于同一点,在后面将学习这一点叫做三角形的内心,设△ABC的内心为I,则∠BIC=90°+∠A;如图,三条直线l1、l2、l3相交于A、B、C三点,到三条直线距离都相等的点应有4个,即两对角平分线的交点,以及相邻外角平分线的交点.五、运用新知,深化理解【例2】如图,已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.【答案】因为BF⊥AC,CE⊥AB,所以∠BED=∠CFD=90°.在△BDE和CDF中,因为∠BED=∠CFD,∠BED=∠CDF,BD=CD,所以△BDE≌△CDF,所以DE=DF,所以点D在∠BAC的平分线上.六、师生互动,课堂小结这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.学生要会证明角平分线性质与判定定理,并会应用这个定理,会证明三角形三条角平分线相交于一点,并会运用这个定理.【教学反思】本节课的教学类比线段垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体谅对方夫妻吵架保证书3篇
- 租赁经营的市场统计与数据分析应用考核试卷
- 相机滤镜类型与场景应用考核试卷
- 测绘技术在城市热岛效应研究中的应用考核试卷
- 知识产权海关协助考核试卷
- 《论语(英译本)》中理雅各的‘孔子变形记’解析
- 2025标准租赁协议合同书
- 2025年租赁合同样本
- 2025国内劳务合同模板
- T-ISC 0027-2023 《互联网企业未成年人网络保护管理体系》
- 近视防控技术的进展
- 工作场所安全与环境保护管理制度
- 电气自动化试题及答案
- 内控评价收集资料清单
- 虹桥商务区核心区一期及南北片区集中供能专项规划
- 六年级数学上册第二单元《位置与方向》测试题-人教版(含答案)
- 专题11二次函数中矩形存在性综合应用(专项训练)(原卷版+解析)
- 广东省医疗服务价格项目及价格
- 泼水节文化介绍课件
- 第3课我爱我家教学课件2021-2022学年赣美版美术八年级下册
- 2024年江苏省泰州市泰兴市中考一模物理试卷(含答案解析)
评论
0/150
提交评论