2022年八年级数学上册第14章全等三角形14.2三角形全等的判定第6课时全等三角形的判定方法的综合运用教案新版沪科版_第1页
2022年八年级数学上册第14章全等三角形14.2三角形全等的判定第6课时全等三角形的判定方法的综合运用教案新版沪科版_第2页
2022年八年级数学上册第14章全等三角形14.2三角形全等的判定第6课时全等三角形的判定方法的综合运用教案新版沪科版_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!欢迎阅读本文档,希望本文档能对您有所帮助!14.2三角形全等的判定第6课时全等三角形的判定方法的综合运用教学目标【知识与能力】熟练运用判定两个三角形全等的方法,能够将文字叙述转化为符号语言并能画出相应图形。【过程与方法】经历运用判定两个三角形全等的方法的过程,熟练掌握两个三角形全等的判定方法。【情感态度价值观】感受数学思想,激发学生的求知欲,培养良好的逻辑思维能力。教学重难点【教学重点】三角形全等判定方法的运用。【教学难点】将文字叙述转化为符号语言并画出相应图形。课前准备课件、教具等。教学过程一、情境导入小明设计了一个玩具模型,如图所示,其中AB=AC,CD⊥AB于点D,BE⊥AC于点E,CD、BE相交于点O,为了使图形美观,小刚希望AO恰好平分∠BAC,他的这个愿望能实现吗?请你帮他说明理由.二、合作探究探究点一:灵活选用合适方法证明三角形全等例1如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为________(答案不唯一,只需填一个).解析:根据已知可知两个三角形已经具备有一角与一边对应相等,所以根据全等三角形的判定方法,可以添加一边或一角都可以得到这两个三角形全等.若根据“SAS”判定时,则可以添加AC=DC;若根据“ASA”判定时,则可以添加∠B=∠E;若根据AAS判定时,则可以添加∠A=∠D.因此本题可以添加的条件为AC=DC或∠B=∠E或∠A=∠D.方法总结:根据不同的判定三角形全等的方法可以选择添加不同的条件,需要注意,不能使添加的条件符合“边边角”,这也是本题容易出错的地方.探究点二:多次运用三角形全等的判定例2如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与A重合),在点E移动的过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由.解析:要证BE=DE,先证△ADC≌△ABC(SSS),得到∠DAE=∠BAE,再证△ADE≌△ABE(SAS)即可.解:相等.理由如下:在△ABC和△ADC中,AB=AD,AC=AC,BC=DC,∴△ABC≌△ADC(SSS),∴∠DAE=∠BAE.在△ADE和△ABE中,AB=AD,∠DAE=∠BAE,AE=AE,∴△ADE≌△ABE(SAS),∴BE=DE.方法总结:本题考查了全等三角形的判定和性质,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题要特别注意“SSA”不能作为全等三角形一种证明方法使用.例3如图,CD⊥AB于D点,BE⊥AC于E点,BE,CD交于O点,且AO平分∠BAC.求证:OB=OC.解析:已知BE⊥AC,CD⊥AB可推出∠ADC=∠BDC=∠AEB=∠CEB=90°,由AO平分∠BAC可知∠1=∠2,然后根据“AAS”、“ASA”分别证得△AOD≌△AOE,△BOD≌△COE,即可证得OB=OC.证明:∵BE⊥AC,CD⊥AB,∴∠ADC=∠BDC=∠AEB=∠CEB=90°.∵AO平分∠BAC,∴∠1=∠2.在△AOD和△AOE中,∵eq\b\lc\{(\a\vs4\al\co1(∠ADC=∠AEB,,∠1=∠2,,OA=OA,))∴△AOD≌△AOE(AAS).∴OD=OE.在△BOD和△COE中,∵eq\b\lc\{(\a\vs4\al\co1(∠BDC=∠CEB,,OD=OE,,∠BOD=∠COE,))∴△BOD≌△COE(ASA).∴OB=OC.方法总结:判定直角三角形全等的方法除“HL”外,还有“SSS”、“SAS”、“ASA”、“AAS”.三、板书设计判定三角形全等的思路:教学反

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论