




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
)) VerticalandHorizontalAlinex=kisaverticalasymptoteofthecurvey=f(x),if:limf(x)=±ooorlimf(x)= Alineisahorizontalasymptoteofthecurvey=f(x),if:limf(x)=Aorlimf(x)= X➔-Supposethatf(x)iscontinuouson[a,b],andNisanumberbetweenf(a)andf(b),thenthereisacE[a,b]suchthatf(c)=N.Iff(x)1)continuouson[a,2)differentiableon(a,ThenatleastexistsonenumberE(ab)satisfythefollowingf(b)-f(互
b-导数计算基本初等函数导数表(详见【方法详解】
[f(x)±g(x)]=f(x)±g(x)=[f(x)g(x)]=f(x)g(x)+f(x)g l
f(x)g(x)-f(x)g ,g(x)-=I复合函数(compositefunction),y=f[g(x)]fgchain令u=g(x),则y=f(u),dy=dy·du=外层求导·内层求 du例:x2y2r2,r 2x+2ydx=0
dx=-切线与割 TangentandSecantTangentline1)(2)求切点SecantLine(1)两点直接求方程Position,Velocity,andPosition: v(t)=x(t)=dX
Acceleration:a(t)=v(t)=dvOra(t)=x(t)=d fDisplacement:ft2v Distance:t2|v|f
a(t)>Speed vaRelatedKey:L(x)=f(a)+f(a)×(x-IncreasingorLocal(Relative)ConcaveUpandPointof(具体步骤见【方法详解】TD制作Riemann LeftRiemannRightRiemannMidpointRiemannInterpretingofDefinite 牛莱公f(x)dx=F(x)+积分运算与积分表(见【方法积分方CalculusCalculusLongDivisionandCompletingtheIntegrationByudv=uv vPartial(x-a)(x-b)(x-(TD反常积SeparationofRewriteinthedifferentialIntegratebothsidesofthe
dy=M(x)fdy=fExponentialOTheExponentialgrowthanddecaymodel,dy=ky,withinitialconditiony=O
whent=hassolutionsoftheformy=LogisticTheLogisticdifferentialequation,dP=kP(1- KPk增长速度最快。(TDAveragebf(x)dx=f(c)(b-a求面定截面体bv a旋转体弧 L 1+ )2 Larn-1=a+ar+ar2+ar3+If|r|<1,theseriesconverges;If|r|_1,theseriesdiverges
=lim
1-1-rCalculusCalculusHarmonicSeriesandp-交错RatioTestforTaylorIfafunctionf(x)hasderivativesofallordersatx=a,thentheTaylorseiresforf(x)x=af(x)=
n!(x-=f(a)+f(a)(x-a)+fll(a)(x-a)2+…+fn(a)(x-a)n+ Word(TD求极当f(x)在xc处连续时,limf(xx趋向的数带入式子即可。x=c0xx=c无定义,不连续。第一步:看是否可以因式分解,上下同除消掉为0部分。第二步:看是否可以利用(x+y)(x–y)=x2-y2消除掉为0部分。Supposearationalf(x)=Pn(X)(Q(x)-=IlimPn(X)=
a。XnlX
n-
Xl
-=I0,
-=I0)
a(m=bX➔ooQm(X)X➔oob。XmlXl+…+bm-lXl ±oo(n>0(n<
= 1 lim(1+
=e➔lim(1+x)X=Limit
limOandlimoo Iff(c)=g(c)=o(f(c)=g(c)=oo),f(x)andg'(x)exist,andg'(c)-=I0, =X➔c X➔c limf(x)与limf(x)与 x➔x图removableCalculus图jump图discontinuitiesduetoverticalLocal(Relative)Iff'(a)equalszeroorDNE(Doesnotexist),and𝑓′(𝑥)changesitssignatx=a,wesayhasalocalextremevalueatx=CalculusGlobal(Absolute) SecondConcaveUpandPointof1.积分
PreciseDefinition:WesaylimfxL
LimitatInfinity:Wesay
fxLifforeveryc0thereisao0suchthat canmakefxasclosetoLaswewantbywhenever0xaothenfxLc. takingxlargeenoughandpositive.“Working”Definition:Wesaylimfx
Thereisasimilardefinitionfor
fxifwecanmakefxasclosetoLaswe exceptwerequirexlargeandbytakingxsufficientlyclosetoa(oneithersideofa)withoutlettingxa.
imit:Wesaylim
Righthandlimit:limfxL.This canmakefxarbitrarilylarge(andthesamedefinitionasthelimitexceptitrequiresxa.
bytakingxsufficientlyclosetoa(oneithersideofa)withoutlettingxa.ThereisasimilardefinitionforfxLefthandlimit:
fxL.Thishas
exceptwemakefxarbitrarilylargesamedefinitionasthelimitexceptitxa
Relationshipbetweenthelimfx
x
x
x
fxLlimfx
fx
fxlimfxDoesNotxAssumelimfxandlimg
bothexistandcisanynumber providedlimgxlimcfxclimf providedlimgx limfxgxlimfx
xagxlimfx
limgxlimfx
limfxgxlimfxlimg
nlimf nnlimf xa BasicLimitEvaluationsatNote:sgna1ifa0andsgna1ifa0limex limex 5.neven:limxnx x limlnx limlnx 6.nodd:limxn&limxnx
x xIfr0thenlim 7.neven:limaxn·bxcsgn
xr0andxrisrealfornegative 8.nodd
limaxn·bxcsgnathenlimb
9.nodd:limaxn·cxdsgnax Continuous
EvaluationL’Hospital’sIffxiscontinuousatathenlimfxfa Iflimfx0orlimfxxag xag ContinuousFunctionsand limfxlimfxaisanumber,orfxiscontinuousatbandlimgxb xag xaglimfgxflimgxf Polynomialsat Factorand
pxandqxarepolynomials.Top limx24x12limx2x x xx
士qx
factorlargestpowerofxinqx x ofbothpxandqxthen 2 2
x2
34 3 2 Rationalize 2 x5x x
x5 3 3 3 3
lim3
Piecewise
x25ifx
x2x2813 x
limgx
gxx93 xx93 xComputetwoonesided
gx
x25CombineRational
gxlim13xlim1
Onesidedlimitsaredifferentsolimgx h0hx x h0 xxh doesn’texist.Ifthetwoonesidedlimits1 beenequalthenlimgxwouldhave lim h0hxxhh0xx
andhadthesameSomeContinuousPartiallistofcontinuousfunctionsandthevaluesofxforwhichtheyarePolynomialsforallRationalfunction,exceptforx’sthat
cosxandsinxforalltanxandsecxdivisionbynn(nodd)forall x·nn
冗冗3 (neven)forallx0 2 exforall cotxandcscxlnxforx0 x·,2冗,冗0,冗,2冗Suppose
IntermediateValuefxiscontinuouson[a,b]andletMbeanynumberbetweenfaandfbThenthereexistsanumbercsuchthatacbandfcM Ifyfxthenthederivativeisdefinedtobefxlim xh xh Ifyfxthenallofthefollowing Ifyfxallofthefollowingareequivalentnotationsforthe notationsforderivativeevaluatedatxafxydfdydfxDfx
fa
dx
dx
DfaInterpretationoftheIfyfx faistheinstantaneousratemfaistheslopeofthe changeoffxatxalinetoyfxatxaandthe 3.Iffxisthepositionofanobjectatequationofthetangentlineatxais timexthenfaisthevelocityofgivenbyyfafaxa. theobjectatxa.Iffx
BasicPropertiesandgxaredifferentiablefunctions(thederivativeexists),candnareanyreal cfcf
c fgfxg 6.dxnnxn1–Power fgf
fgfgfgfg
–Product dfgxfgxgg g
–Quotient ThisistheChaindxdsinxcos
Commondcscxcscxcotxdcotxcsc2
daxaxlnadex1dcosxsin dsin1x dlnx1,x1dtanxsec2x
dcos1x 11
dlnx1
xdsecxsecxtan
d
x
x
x
1
ChainRuleThechainruleappliedtosomespecific dfxnnfxn1f 5.dcosfx」fxsinfx efx
fxef 6.dtanf fxsec2fxd
fxf 7.dsecf(x)f(x)secf(x)tanf(f d2dsinfx f f tan1fx f 2 1fxHigherOrderTheSecondDerivativeisdenoted ThenthDerivativeisdenotedfxf2xd2
andisdefinedas
andisdefinedfxfx,i.e.thederivativeofthederivative,fx.
fnxfn1x,i.e.thederivativeofthe(n-1)stderivative,fn1x.ImplicitFindyife2x9yx3y2siny11x.Rememberyyxhere,soproducts/quotientsofxandywillusetheproduct/quotientruleandderivativesofywillusethechainrule.The“trick”istodifferentiateasnormalandeverytimeyoudifferentiateayyoutackonay(fromthechainrule).Afterdifferentiatingsolvefory.e2x9y29y3x2y22x3yycosyy2e2x9y 2x9 2
y
11
2x9
3x29y 3xy2xyycosyy2x3y9e2x9ycosyy112e2x9y3x2
Critical
Increasing/Decreasing–ConcaveUp/Concavexcisacriticalpointoffxprovided1.fc0or2.fcdoesn’tIffx0forallxinanintervalIfxisincreasingontheintervalIffx0forallxinanintervalIfxisdecreasingontheintervalIffx0forallxinanintervalIfxisconstantontheinterval
ConcaveUp/ConcaveIffx0forallxinanintervalIfxisconcaveupontheintervalIffx0forallxinanintervalIfxisconcavedownontheintervalInflectionxcisainflectionpointoffxiftheconchangesatxc.Absolutexcisan umoff
Relative(local)xcisarelative(or umiffcfxforallxin fxiffcfxforallxnearxcisanabsoluteminimumoff xcisarelative(orlocal)minimumfxiffcfxforallxneariffcfxforallxin Fermat’sIffxhasarelative(orlocal)extremaxc,thenxcisacriticalpointoffxExtremeValueIffxiscontinuousonthecloseda,bthenthereexistnumberscanddso
1stDerivativeIfxcisacriticalpointof thenxcarel.max.offxiffx0totheleftofxcandfx0totherightofxc.arel.min.offxiffx0totheleftofxcandfx0totherightofxc.notarelativeextremaoffxiffxac,db, fcistheabs.max. thesamesignonbothsidesofxca,b,3.fdistheabs.min.ina,b 2ndDerivativeIfxcisacriticalpointoffxsuchFindingAbsoluteTofindtheabsoluteextremaofthefunctionfxontheintervala,busethefollowingprocess.Findallcriticalpointsoffxina,b
fc0thenxisa umoffxiffc0isarelativeminimumoffxiffc0maybearelativeum,EvaluatefxatallpointsfoundinStep minimum,orneitheriffc0EvaluatefaandfbIdentifytheabs.max.(largestfunctionvalue)andtheabs.min.(smallestfunctionvalue)fromtheevaluationsinSteps2&3.
FindingRelativeExtremaand/orClassifyCriticalPointsFindallcriticalpointsoffxUsethe1stderivativetestorthe2ndderivativetestoneachcriticalpoint.MeanValueIffxiscontinuousontheclosedintervala,banddifferentiableontheopenintervala,thenthereisanumberacbsuchthatfcfbfabNewton’sIfxisthenthguessfortheroot/solutionoffx0then(n+1)stguessis xfxnnprovidedfxn
fxnRelatedEx.Twopeopleare50ftapartwhenonestartswalkingnorth.Theangle8changesat0.01rad/min.Atwhatrateisthebetweenthemchangingwhen 0.5WeEx.Twopeopleare50ftapartwhenonestartswalkingnorth.Theangle8changesat0.01rad/min.Atwhatrateisthebetweenthemchangingwhen 0.5Wehave8 0.01rad/min.andwanttox.Wecanusevarioustrigfcnsbuteasiest sec8tan88x We 0.05soplugin8andsec0.5tan Remembertohavecalculatorinradians!tiesandsolvefortheEx.Ex.A15footladderisrestingagainstawall.Thebottomisinitially10ftawayandispushedtowardsthewallat1ft/sec.How4isthetopmovingafter12xisnegativebecausexisdecreasing.UsingPythagoreanTheoremanddifferentiating,x2y2 2xx2yy After12secwehave 10147soy 15272 176.Pluginandsolvefory.7 14176 074Sketchpictureifneeded,writedownequationtobeoptimizedandconstraint.Solveconstraintforoneofthetwovariablesandplugintoequation.Findcriticalpointsofequationinrangeofvariablesandverifythattheyaremin/maxasneeded.Ex.We’reenclosingarectangularfieldwith500ftoffencematerialandonesideofthefieldEx.We’reenclosingarectangularfieldwith500ftoffencematerialandonesideofthefieldisabuilding.Determinedimensionsthat izetheenclosedarea.ize xysubjecttoconstraintx2y intoarea. 5002y y5002y500y2Differentiateandfindcritical 5004y By2ndderiv.testthisisarel.max.andsoistheanswerwe’reafter.Finally,findx. 500 Thedimensionsarethen250xEx.Determinepoint(s)on x21thatclosesttoMinimizedx02y22andeconstraintis x21.Solveconstraintx2andplugintothey1 x2yy1y y23yDifferentiateandfindcriticalf 2y y2Bythe2ndderivativetestthisisarel.min.andsoallweneedto sfindxvalue(s).3212 The2pointsare and2 22 2DefiniteIntegral:Supposefxis Anti-Derivative:Ananti-derivativeoffxona,b.Dividea,bintonsubintervals isafunction,Fx,suchthatFxfxwidthxandchoosex*fromeach
fxdxFx
fxdxlimfx
x whereFxisananti-derivativeoffxFundamentalTheoremofPartI:Iffxiscontinuousona,b VariantsofPartI
xftdtisalsocontinuousona,
du
uxft x andgx
dxxftdt x d ftdtvxfvx dxv PartII:fxiscontinuousona,b,Fx u ft xfu(ananti-derivativeoffx(i.e.Fx fxdxbthenafxdxFbFa
dxv fxgxdx afxgxdxafxdxagxa
cfxdxcfxdx,cisa acfxdxcafxdx,cisa afxdx afxdxaft afxdxbfx
afxdx
fxIffxgxonaxbthenafxdxbgxbIffx0onaxbthenafxdxbIfmfxMonaxbthenmba fxdxMbkdxkx
Commonsinuducosusinuducosu
xndx1xn1c,nxndx1xn1c,n
du tanaa a2 aa1ax
dx1lnaxb
secutanudusecu 21
du
ulnuduulnuueudueu
cscucotuducscucsc2uducotuStandardIntegrationNotethatatmanyschoolsallbuttheSubstitutionRuletendtobetaughtinaCalculusII guSubstitution:Thesubstitutionugxwillconvertbfgxgxdxgbfu g 5xcos 22 31215xcos dx 5xcos 22 31215xcos dx 2 381cosuu du3xdxxdx32213x1u131::x2u23sin sin8sin585313IntegrationbyParts:udvuvv andbudvuvbbvdu.Chooseuanddv integralandcomputedubydifferentiatinguandcomputevusingvdvEx.Ex.xexu dv du vxexdxxexexdxxexexEx.3lnx5uln dv du1dxvx53lnxdxxln dxxlnx553 535ln53ln3Productsand(some)QuotientsofTrigForsinnxcosmxdxwehavethefollowing Fortannxsecmxdxwehavethefollowingnodd.Strip1sineoutandconvertresttocosinesusingsin2x1cos2x,thenusethesubstitutionucosx.modd.Strip1cosineoutandconvertresttosinesusingcos2x1sin2x,thenusethesubstitutionusinx.nandmbothodd.Useeither1.ornandmbotheven.Usedoubleangleand/orhalfangleformulastoreducetheintegralintoaformthatcanbe
nodd.Strip1tangentand1secantoutandconverttheresttosecantsusingtan2xsec2x1,thenusetheusecxmeven.Strip2secantsoutandconvertresttotangentsusingsec2x1tan2x,thenusethesubstitutionutanx.noddandmeven.Useeither1.ornevenandmodd.Eachintegralwillbedealtwithdifferently.TrigFormulas:sin2x2sinxcosx,cos2x121cos2x,sin2x121Ex.Ex.tan3xsec5xtan3xsec5xdxtan2xsec4xtanxsecsec2x1sec4xtanxsecu2 usec1sec7x1sec5x75sincos35sincos35dxsinxsincos34dx(sin2sincos3(1cosx)sincos32ucos2du12uu41sec2x2lncosx1cos2x22TrigSubstitutions:Iftheintegralcontainsthefollowingrootusethegivensubstitutionandformulatoconvertintoanintegralinvolvingtrigfunctions.a2b2b2x2a2b2 xasin8 xasec8 xatan8cos28a2b2b2x2a2b2 x249
94sin282cos89
2cos8d8
12 sin 3 x2 dx2cos83 49x2 44sin28 4cos282 x2x.Becausewehaveanintegralwe’llassumepositiveanddropabsolutevaluebars.Ifwehadadefiniteintegralwe’dneedtocompute8’sandremoveabsolutevaluebarsbasedonthatand,
12csc2d812cot8UseRightTriangleTrigtogobacktox’s.2substitutionwehavesin83x2x
ifx
Fromthisweseethatcot849x2. ifxInthiscasewe 49x22cos8
x249
dx
449x
2 PartialFractions:IfintegratingPxdxwherethedegreeofPxissmallerthanthe QQx.Factordenominatorascompleyaspossibleandfindthepartialfraction positionoftherationalexpression.Integratethepartialfraction position(P.F.D.).Foreachfactorinthedenominatorwegetterm(s)inthe positionaccordingtothefollowingtable.FactorFactorinQxaxTermin FactorinQ axTerminA1 axaxaxax2bxaxAxB2kax2bxkA1xB1ax2bxcAkxax2bxcSetcoefficientsequaltogetasystemandsolvetogetconstants.AB CB 4ACA B C27x213xABx2CBx4A(x1)(xlandcollectlikexABxCA(x24)(BxC)( )2(x1)(xSetnumer7x2Hereispartialfractionform22x231lnx484lnx22x x x2dx(x1)(x2(x1)(x24)27x7x2Ex.ternatemethodthatsometimesworkstofindconstants.Startwithsettingnumeratorsequalinpreviousexample:7x213xAx24BxCx1.Chosenicevaluesofxandplugin.Forexampleifx1weget205AwhichgivesA4.Thiswon’talwayswork ApplicationsofNetArea:afxdxrepresentsthenetareabetweenfxandx-axiswithareaabovex-axispositiveandareabelowx-axisAreaBetweenCurves:Teralformulasforthetwomaincasesforeach yfxAaupperfunctionlowerfunctiondx&xfyAcrightfunctionleftfunctiondyIfthecurvesintersectthentheareaofeachportionmustbefoundindividually.Herearesomesketchesofacouplepossiblesituationsandformulasforacoupleofpossiblecases. adAbfxgx Aad
cfygy
Aafxgxdxcgxfx VolumesVolumesofRevolution:ThetwomainformulasareVAxdxandVAydy.Hereissomegeneralinformationaboutea ethodofcomputingandsomeexamples.A冗outerradius2innerradius2Limits:x/yofright/botringtox/yofleft/topringHorz.Axisusefx, Vert.Axisusefy,gx,Axand gy,AyandA2冗radiuswidth/Limits:x/yofinnercyl.tox/yofoutercyl.Horz.Axisusefy Vert.Axisusefxgy,Ayandgx,AxandEx.Axis:ya Ex.Axis:ya Ex.Axis:ya Ex.Axis:yaouterouterradius:afinnerradius:agouterradius:aginnerradius:afradius:awidth:fygyradius:awidth:fygyTheseareonlyafewcasesforhorizontalaxisofrotation.Ifaxisofrotationisthex-axisuseya0casewitha0.Forverticalaxisofrotation(xa0andxa0)interchangexytogetappropriateWork:IfaforceofFxmovesan AverageFunctionValue:Theaverage ainaxb,theworkdoneisWbFx offxonaxbisfavgbaa
fxa ArcLengthSurfaceArea:NotethatthisisoftenaCalcIItopic.Thethreebasic 1222Lads SAa2冗yds(rotateaboutx-axis) SAa1222ds dxifyfx,ax ds dtifxft,ygt,at12r 2ds dyifxfy,ay ds d8ifr12r 2Withsurfaceareayoumayhavetosubstituteinforthexorydependingonyourchoiceofdstomatchthedifferentialintheds.Withparametricandpolaryouwillalwaysneedtosubstitute.ImproperAnimproperintegralisanintegralwithoneormoreinfiniimitsand/ordiscontinuousintegrands.Integraliscalledconvergentifthelimitexistsandhasafinitevalueanddivergentifthelimitdoesn’texistorhasinfinitevalue.ThisistypicallyaCalcIItopic.Infini afxdxlimafx fxdxlimtfx fxdxfxdxcf rovidedBOTHintegralsare 1.Discont.ata:
fxdx
fx 2.Discont.atb:
fxdxlim
fx ta
3.Discontinuityatacb:afxdxafxdxcf rovidedbothare Ifafxdxconv.thenagxdxconv. 2.Ifagxdxdivg.thenafxdxdivg.Usefulfact:Ifa0then 1dxconvergesifp1anddivergesfor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中职语文高教版《赤壁赋》教案
- 学习经验演讲稿
- 2025-2030年中国PE埋地排水管行业投资战略决策研究报告
- 2025至2031年中国玩具类烟花行业投资前景及策略咨询研究报告
- 烟台市莱州市2025届数学五年级第二学期期末调研试题含答案
- 血红蛋白C病的临床护理
- 2025-2030年中国L乳酸行业投资策略分析及发展方向研究报告
- 市场评估及其分析
- 强化企业形象塑造的年度措施计划
- 部编版小学一年级下册语文《春、夏、秋、冬》教学设计
- 波纹管工艺流程图
- DB21-T 2869-2017消防设施检测技术规程
- 《电泳分离》课件
- 中医脾胃养生保健知识课件
- 2025年日历表带农历【阴历】完美打印版
- 《萨丽娃姐姐的春天》详细解读
- 脑卒中恢复期的护理查房课件
- 泵站工程防洪度汛应急预案
- 火灾监测项目融资计划书
- 毒蛇咬伤事故专项应急预案
- 小麦育种技术进展
评论
0/150
提交评论