testdaily-15门ap常考科目open微积分_第1页
testdaily-15门ap常考科目open微积分_第2页
testdaily-15门ap常考科目open微积分_第3页
testdaily-15门ap常考科目open微积分_第4页
testdaily-15门ap常考科目open微积分_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

)) VerticalandHorizontalAlinex=kisaverticalasymptoteofthecurvey=f(x),if:limf(x)=±ooorlimf(x)= Alineisahorizontalasymptoteofthecurvey=f(x),if:limf(x)=Aorlimf(x)= X➔-Supposethatf(x)iscontinuouson[a,b],andNisanumberbetweenf(a)andf(b),thenthereisacE[a,b]suchthatf(c)=N.Iff(x)1)continuouson[a,2)differentiableon(a,ThenatleastexistsonenumberE(ab)satisfythefollowingf(b)-f(互

b-导数计算基本初等函数导数表(详见【方法详解】

[f(x)±g(x)]=f(x)±g(x)=[f(x)g(x)]=f(x)g(x)+f(x)g l

f(x)g(x)-f(x)g ,g(x)-=I复合函数(compositefunction),y=f[g(x)]fgchain令u=g(x),则y=f(u),dy=dy·du=外层求导·内层求 du例:x2y2r2,r 2x+2ydx=0

dx=-切线与割 TangentandSecantTangentline1)(2)求切点SecantLine(1)两点直接求方程Position,Velocity,andPosition: v(t)=x(t)=dX

Acceleration:a(t)=v(t)=dvOra(t)=x(t)=d fDisplacement:ft2v Distance:t2|v|f

a(t)>Speed vaRelatedKey:L(x)=f(a)+f(a)×(x-IncreasingorLocal(Relative)ConcaveUpandPointof(具体步骤见【方法详解】TD制作Riemann LeftRiemannRightRiemannMidpointRiemannInterpretingofDefinite 牛莱公f(x)dx=F(x)+积分运算与积分表(见【方法积分方CalculusCalculusLongDivisionandCompletingtheIntegrationByudv=uv vPartial(x-a)(x-b)(x-(TD反常积SeparationofRewriteinthedifferentialIntegratebothsidesofthe

dy=M(x)fdy=fExponentialOTheExponentialgrowthanddecaymodel,dy=ky,withinitialconditiony=O

whent=hassolutionsoftheformy=LogisticTheLogisticdifferentialequation,dP=kP(1- KPk增长速度最快。(TDAveragebf(x)dx=f(c)(b-a求面定截面体bv a旋转体弧 L 1+ )2 Larn-1=a+ar+ar2+ar3+If|r|<1,theseriesconverges;If|r|_1,theseriesdiverges

=lim

1-1-rCalculusCalculusHarmonicSeriesandp-交错RatioTestforTaylorIfafunctionf(x)hasderivativesofallordersatx=a,thentheTaylorseiresforf(x)x=af(x)=

n!(x-=f(a)+f(a)(x-a)+fll(a)(x-a)2+…+fn(a)(x-a)n+ Word(TD求极当f(x)在xc处连续时,limf(xx趋向的数带入式子即可。x=c0xx=c无定义,不连续。第一步:看是否可以因式分解,上下同除消掉为0部分。第二步:看是否可以利用(x+y)(x–y)=x2-y2消除掉为0部分。Supposearationalf(x)=Pn(X)(Q(x)-=IlimPn(X)=

a。XnlX

n-

Xl

-=I0,

-=I0)

a(m=bX➔ooQm(X)X➔oob。XmlXl+…+bm-lXl ±oo(n>0(n<

= 1 lim(1+

=e➔lim(1+x)X=Limit

limOandlimoo Iff(c)=g(c)=o(f(c)=g(c)=oo),f(x)andg'(x)exist,andg'(c)-=I0, =X➔c X➔c limf(x)与limf(x)与 x➔x图removableCalculus图jump图discontinuitiesduetoverticalLocal(Relative)Iff'(a)equalszeroorDNE(Doesnotexist),and𝑓′(𝑥)changesitssignatx=a,wesayhasalocalextremevalueatx=CalculusGlobal(Absolute) SecondConcaveUpandPointof1.积分

PreciseDefinition:WesaylimfxL

LimitatInfinity:Wesay

fxLifforeveryc0thereisao0suchthat canmakefxasclosetoLaswewantbywhenever0xaothenfxLc. takingxlargeenoughandpositive.“Working”Definition:Wesaylimfx

Thereisasimilardefinitionfor

fxifwecanmakefxasclosetoLaswe exceptwerequirexlargeandbytakingxsufficientlyclosetoa(oneithersideofa)withoutlettingxa.

imit:Wesaylim

Righthandlimit:limfxL.This canmakefxarbitrarilylarge(andthesamedefinitionasthelimitexceptitrequiresxa.

bytakingxsufficientlyclosetoa(oneithersideofa)withoutlettingxa.ThereisasimilardefinitionforfxLefthandlimit:

fxL.Thishas

exceptwemakefxarbitrarilylargesamedefinitionasthelimitexceptitxa

Relationshipbetweenthelimfx

x

x

x

fxLlimfx

fx

fxlimfxDoesNotxAssumelimfxandlimg

bothexistandcisanynumber providedlimgxlimcfxclimf providedlimgx limfxgxlimfx

xagxlimfx

limgxlimfx

limfxgxlimfxlimg

nlimf nnlimf xa BasicLimitEvaluationsatNote:sgna1ifa0andsgna1ifa0limex limex 5.neven:limxnx x limlnx limlnx 6.nodd:limxn&limxnx

x xIfr0thenlim 7.neven:limaxn·bxcsgn

xr0andxrisrealfornegative 8.nodd

limaxn·bxcsgnathenlimb

9.nodd:limaxn·cxdsgnax Continuous

EvaluationL’Hospital’sIffxiscontinuousatathenlimfxfa Iflimfx0orlimfxxag xag ContinuousFunctionsand limfxlimfxaisanumber,orfxiscontinuousatbandlimgxb xag xaglimfgxflimgxf Polynomialsat Factorand

pxandqxarepolynomials.Top limx24x12limx2x x xx

士qx

factorlargestpowerofxinqx x ofbothpxandqxthen 2 2

x2

34 3 2 Rationalize 2 x5x x

x5 3 3 3 3

lim3

Piecewise

x25ifx

x2x2813 x

limgx

gxx93 xx93 xComputetwoonesided

gx

x25CombineRational

gxlim13xlim1

Onesidedlimitsaredifferentsolimgx h0hx x h0 xxh doesn’texist.Ifthetwoonesidedlimits1 beenequalthenlimgxwouldhave lim h0hxxhh0xx

andhadthesameSomeContinuousPartiallistofcontinuousfunctionsandthevaluesofxforwhichtheyarePolynomialsforallRationalfunction,exceptforx’sthat

cosxandsinxforalltanxandsecxdivisionbynn(nodd)forall x·nn

冗冗3 (neven)forallx0 2 exforall cotxandcscxlnxforx0 x·,2冗,冗0,冗,2冗Suppose

IntermediateValuefxiscontinuouson[a,b]andletMbeanynumberbetweenfaandfbThenthereexistsanumbercsuchthatacbandfcM Ifyfxthenthederivativeisdefinedtobefxlim xh xh Ifyfxthenallofthefollowing Ifyfxallofthefollowingareequivalentnotationsforthe notationsforderivativeevaluatedatxafxydfdydfxDfx

fa

dx

dx

DfaInterpretationoftheIfyfx faistheinstantaneousratemfaistheslopeofthe changeoffxatxalinetoyfxatxaandthe 3.Iffxisthepositionofanobjectatequationofthetangentlineatxais timexthenfaisthevelocityofgivenbyyfafaxa. theobjectatxa.Iffx

BasicPropertiesandgxaredifferentiablefunctions(thederivativeexists),candnareanyreal cfcf

c fgfxg 6.dxnnxn1–Power fgf

fgfgfgfg

–Product dfgxfgxgg g

–Quotient ThisistheChaindxdsinxcos

Commondcscxcscxcotxdcotxcsc2

daxaxlnadex1dcosxsin dsin1x dlnx1,x1dtanxsec2x

dcos1x 11

dlnx1

xdsecxsecxtan

d

x

x

x

1

ChainRuleThechainruleappliedtosomespecific dfxnnfxn1f 5.dcosfx」fxsinfx efx

fxef 6.dtanf fxsec2fxd

fxf 7.dsecf(x)f(x)secf(x)tanf(f d2dsinfx f f tan1fx f 2 1fxHigherOrderTheSecondDerivativeisdenoted ThenthDerivativeisdenotedfxf2xd2

andisdefinedas

andisdefinedfxfx,i.e.thederivativeofthederivative,fx.

fnxfn1x,i.e.thederivativeofthe(n-1)stderivative,fn1x.ImplicitFindyife2x9yx3y2siny11x.Rememberyyxhere,soproducts/quotientsofxandywillusetheproduct/quotientruleandderivativesofywillusethechainrule.The“trick”istodifferentiateasnormalandeverytimeyoudifferentiateayyoutackonay(fromthechainrule).Afterdifferentiatingsolvefory.e2x9y29y3x2y22x3yycosyy2e2x9y 2x9 2

y

11

2x9

3x29y 3xy2xyycosyy2x3y9e2x9ycosyy112e2x9y3x2

Critical

Increasing/Decreasing–ConcaveUp/Concavexcisacriticalpointoffxprovided1.fc0or2.fcdoesn’tIffx0forallxinanintervalIfxisincreasingontheintervalIffx0forallxinanintervalIfxisdecreasingontheintervalIffx0forallxinanintervalIfxisconstantontheinterval

ConcaveUp/ConcaveIffx0forallxinanintervalIfxisconcaveupontheintervalIffx0forallxinanintervalIfxisconcavedownontheintervalInflectionxcisainflectionpointoffxiftheconchangesatxc.Absolutexcisan umoff

Relative(local)xcisarelative(or umiffcfxforallxin fxiffcfxforallxnearxcisanabsoluteminimumoff xcisarelative(orlocal)minimumfxiffcfxforallxneariffcfxforallxin Fermat’sIffxhasarelative(orlocal)extremaxc,thenxcisacriticalpointoffxExtremeValueIffxiscontinuousonthecloseda,bthenthereexistnumberscanddso

1stDerivativeIfxcisacriticalpointof thenxcarel.max.offxiffx0totheleftofxcandfx0totherightofxc.arel.min.offxiffx0totheleftofxcandfx0totherightofxc.notarelativeextremaoffxiffxac,db, fcistheabs.max. thesamesignonbothsidesofxca,b,3.fdistheabs.min.ina,b 2ndDerivativeIfxcisacriticalpointoffxsuchFindingAbsoluteTofindtheabsoluteextremaofthefunctionfxontheintervala,busethefollowingprocess.Findallcriticalpointsoffxina,b

fc0thenxisa umoffxiffc0isarelativeminimumoffxiffc0maybearelativeum,EvaluatefxatallpointsfoundinStep minimum,orneitheriffc0EvaluatefaandfbIdentifytheabs.max.(largestfunctionvalue)andtheabs.min.(smallestfunctionvalue)fromtheevaluationsinSteps2&3.

FindingRelativeExtremaand/orClassifyCriticalPointsFindallcriticalpointsoffxUsethe1stderivativetestorthe2ndderivativetestoneachcriticalpoint.MeanValueIffxiscontinuousontheclosedintervala,banddifferentiableontheopenintervala,thenthereisanumberacbsuchthatfcfbfabNewton’sIfxisthenthguessfortheroot/solutionoffx0then(n+1)stguessis xfxnnprovidedfxn

fxnRelatedEx.Twopeopleare50ftapartwhenonestartswalkingnorth.Theangle8changesat0.01rad/min.Atwhatrateisthebetweenthemchangingwhen 0.5WeEx.Twopeopleare50ftapartwhenonestartswalkingnorth.Theangle8changesat0.01rad/min.Atwhatrateisthebetweenthemchangingwhen 0.5Wehave8 0.01rad/min.andwanttox.Wecanusevarioustrigfcnsbuteasiest sec8tan88x We 0.05soplugin8andsec0.5tan Remembertohavecalculatorinradians!tiesandsolvefortheEx.Ex.A15footladderisrestingagainstawall.Thebottomisinitially10ftawayandispushedtowardsthewallat1ft/sec.How4isthetopmovingafter12xisnegativebecausexisdecreasing.UsingPythagoreanTheoremanddifferentiating,x2y2 2xx2yy After12secwehave 10147soy 15272 176.Pluginandsolvefory.7 14176 074Sketchpictureifneeded,writedownequationtobeoptimizedandconstraint.Solveconstraintforoneofthetwovariablesandplugintoequation.Findcriticalpointsofequationinrangeofvariablesandverifythattheyaremin/maxasneeded.Ex.We’reenclosingarectangularfieldwith500ftoffencematerialandonesideofthefieldEx.We’reenclosingarectangularfieldwith500ftoffencematerialandonesideofthefieldisabuilding.Determinedimensionsthat izetheenclosedarea.ize xysubjecttoconstraintx2y intoarea. 5002y y5002y500y2Differentiateandfindcritical 5004y By2ndderiv.testthisisarel.max.andsoistheanswerwe’reafter.Finally,findx. 500 Thedimensionsarethen250xEx.Determinepoint(s)on x21thatclosesttoMinimizedx02y22andeconstraintis x21.Solveconstraintx2andplugintothey1 x2yy1y y23yDifferentiateandfindcriticalf 2y y2Bythe2ndderivativetestthisisarel.min.andsoallweneedto sfindxvalue(s).3212 The2pointsare and2 22 2DefiniteIntegral:Supposefxis Anti-Derivative:Ananti-derivativeoffxona,b.Dividea,bintonsubintervals isafunction,Fx,suchthatFxfxwidthxandchoosex*fromeach

fxdxFx

fxdxlimfx

x whereFxisananti-derivativeoffxFundamentalTheoremofPartI:Iffxiscontinuousona,b VariantsofPartI

xftdtisalsocontinuousona,

du

uxft x andgx

dxxftdt x d ftdtvxfvx dxv PartII:fxiscontinuousona,b,Fx u ft xfu(ananti-derivativeoffx(i.e.Fx fxdxbthenafxdxFbFa

dxv fxgxdx afxgxdxafxdxagxa

cfxdxcfxdx,cisa acfxdxcafxdx,cisa afxdx afxdxaft afxdxbfx

afxdx

fxIffxgxonaxbthenafxdxbgxbIffx0onaxbthenafxdxbIfmfxMonaxbthenmba fxdxMbkdxkx

Commonsinuducosusinuducosu

xndx1xn1c,nxndx1xn1c,n

du tanaa a2 aa1ax

dx1lnaxb

secutanudusecu 21

du

ulnuduulnuueudueu

cscucotuducscucsc2uducotuStandardIntegrationNotethatatmanyschoolsallbuttheSubstitutionRuletendtobetaughtinaCalculusII guSubstitution:Thesubstitutionugxwillconvertbfgxgxdxgbfu g 5xcos 22 31215xcos dx 5xcos 22 31215xcos dx 2 381cosuu du3xdxxdx32213x1u131::x2u23sin sin8sin585313IntegrationbyParts:udvuvv andbudvuvbbvdu.Chooseuanddv integralandcomputedubydifferentiatinguandcomputevusingvdvEx.Ex.xexu dv du vxexdxxexexdxxexexEx.3lnx5uln dv du1dxvx53lnxdxxln dxxlnx553 535ln53ln3Productsand(some)QuotientsofTrigForsinnxcosmxdxwehavethefollowing Fortannxsecmxdxwehavethefollowingnodd.Strip1sineoutandconvertresttocosinesusingsin2x1cos2x,thenusethesubstitutionucosx.modd.Strip1cosineoutandconvertresttosinesusingcos2x1sin2x,thenusethesubstitutionusinx.nandmbothodd.Useeither1.ornandmbotheven.Usedoubleangleand/orhalfangleformulastoreducetheintegralintoaformthatcanbe

nodd.Strip1tangentand1secantoutandconverttheresttosecantsusingtan2xsec2x1,thenusetheusecxmeven.Strip2secantsoutandconvertresttotangentsusingsec2x1tan2x,thenusethesubstitutionutanx.noddandmeven.Useeither1.ornevenandmodd.Eachintegralwillbedealtwithdifferently.TrigFormulas:sin2x2sinxcosx,cos2x121cos2x,sin2x121Ex.Ex.tan3xsec5xtan3xsec5xdxtan2xsec4xtanxsecsec2x1sec4xtanxsecu2 usec1sec7x1sec5x75sincos35sincos35dxsinxsincos34dx(sin2sincos3(1cosx)sincos32ucos2du12uu41sec2x2lncosx1cos2x22TrigSubstitutions:Iftheintegralcontainsthefollowingrootusethegivensubstitutionandformulatoconvertintoanintegralinvolvingtrigfunctions.a2b2b2x2a2b2 xasin8 xasec8 xatan8cos28a2b2b2x2a2b2 x249

94sin282cos89

2cos8d8

12 sin 3 x2 dx2cos83 49x2 44sin28 4cos282 x2x.Becausewehaveanintegralwe’llassumepositiveanddropabsolutevaluebars.Ifwehadadefiniteintegralwe’dneedtocompute8’sandremoveabsolutevaluebarsbasedonthatand,

12csc2d812cot8UseRightTriangleTrigtogobacktox’s.2substitutionwehavesin83x2x

ifx

Fromthisweseethatcot849x2. ifxInthiscasewe 49x22cos8

x249

dx

449x

2 PartialFractions:IfintegratingPxdxwherethedegreeofPxissmallerthanthe QQx.Factordenominatorascompleyaspossibleandfindthepartialfraction positionoftherationalexpression.Integratethepartialfraction position(P.F.D.).Foreachfactorinthedenominatorwegetterm(s)inthe positionaccordingtothefollowingtable.FactorFactorinQxaxTermin FactorinQ axTerminA1 axaxaxax2bxaxAxB2kax2bxkA1xB1ax2bxcAkxax2bxcSetcoefficientsequaltogetasystemandsolvetogetconstants.AB CB 4ACA B C27x213xABx2CBx4A(x1)(xlandcollectlikexABxCA(x24)(BxC)( )2(x1)(xSetnumer7x2Hereispartialfractionform22x231lnx484lnx22x x x2dx(x1)(x2(x1)(x24)27x7x2Ex.ternatemethodthatsometimesworkstofindconstants.Startwithsettingnumeratorsequalinpreviousexample:7x213xAx24BxCx1.Chosenicevaluesofxandplugin.Forexampleifx1weget205AwhichgivesA4.Thiswon’talwayswork ApplicationsofNetArea:afxdxrepresentsthenetareabetweenfxandx-axiswithareaabovex-axispositiveandareabelowx-axisAreaBetweenCurves:Teralformulasforthetwomaincasesforeach yfxAaupperfunctionlowerfunctiondx&xfyAcrightfunctionleftfunctiondyIfthecurvesintersectthentheareaofeachportionmustbefoundindividually.Herearesomesketchesofacouplepossiblesituationsandformulasforacoupleofpossiblecases. adAbfxgx Aad

cfygy

Aafxgxdxcgxfx VolumesVolumesofRevolution:ThetwomainformulasareVAxdxandVAydy.Hereissomegeneralinformationaboutea ethodofcomputingandsomeexamples.A冗outerradius2innerradius2Limits:x/yofright/botringtox/yofleft/topringHorz.Axisusefx, Vert.Axisusefy,gx,Axand gy,AyandA2冗radiuswidth/Limits:x/yofinnercyl.tox/yofoutercyl.Horz.Axisusefy Vert.Axisusefxgy,Ayandgx,AxandEx.Axis:ya Ex.Axis:ya Ex.Axis:ya Ex.Axis:yaouterouterradius:afinnerradius:agouterradius:aginnerradius:afradius:awidth:fygyradius:awidth:fygyTheseareonlyafewcasesforhorizontalaxisofrotation.Ifaxisofrotationisthex-axisuseya0casewitha0.Forverticalaxisofrotation(xa0andxa0)interchangexytogetappropriateWork:IfaforceofFxmovesan AverageFunctionValue:Theaverage ainaxb,theworkdoneisWbFx offxonaxbisfavgbaa

fxa ArcLengthSurfaceArea:NotethatthisisoftenaCalcIItopic.Thethreebasic 1222Lads SAa2冗yds(rotateaboutx-axis) SAa1222ds dxifyfx,ax ds dtifxft,ygt,at12r 2ds dyifxfy,ay ds d8ifr12r 2Withsurfaceareayoumayhavetosubstituteinforthexorydependingonyourchoiceofdstomatchthedifferentialintheds.Withparametricandpolaryouwillalwaysneedtosubstitute.ImproperAnimproperintegralisanintegralwithoneormoreinfiniimitsand/ordiscontinuousintegrands.Integraliscalledconvergentifthelimitexistsandhasafinitevalueanddivergentifthelimitdoesn’texistorhasinfinitevalue.ThisistypicallyaCalcIItopic.Infini afxdxlimafx fxdxlimtfx fxdxfxdxcf rovidedBOTHintegralsare 1.Discont.ata:

fxdx

fx 2.Discont.atb:

fxdxlim

fx ta

3.Discontinuityatacb:afxdxafxdxcf rovidedbothare Ifafxdxconv.thenagxdxconv. 2.Ifagxdxdivg.thenafxdxdivg.Usefulfact:Ifa0then 1dxconvergesifp1anddivergesfor

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论