2022-2023学年浙江省江北区九年级数学上册期末预测试题含解析_第1页
2022-2023学年浙江省江北区九年级数学上册期末预测试题含解析_第2页
2022-2023学年浙江省江北区九年级数学上册期末预测试题含解析_第3页
2022-2023学年浙江省江北区九年级数学上册期末预测试题含解析_第4页
2022-2023学年浙江省江北区九年级数学上册期末预测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.抛物线的对称轴是()A. B. C. D.2.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限3.如图,是的直径,弦于点,如果,,那么线段的长为()A.6 B.8 C.10 D.124.已知关于的一元二次方程的一个根是2,则的值为()A.-1 B.1 C.-2 D.25.已知和的半径长分别是方程的两根,且,则和的位置关系为()A.相交 B.内切 C.内含 D.外切6.若,则的值是()A.1 B.2 C.3 D.47.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.28.一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=29.按如图所示的运算程序,输入的的值为,那么输出的的值为()A.1 B.2 C.3 D.410.由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.现有6张正面分别标有数字的不透明卡片,这些卡片除数字不同外其余全部相同现将它们背面朝上,洗均匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根的概率为____.12.如图,如果一只蚂蚁从圆锥底面上的点B出发,沿表面爬到母线AC的中点D处,则最短路线长为_____.13.如图,在中,,为边上一点,已知,,,则____________.14.一个质地均匀的小正方体,六个面分别标有数字“”“”“”“”“”“”,随机掷一次小正方体,朝上一面的数字是奇数的概率是_____.15.如果函数是关于的二次函数,则__________.16.写出一个你认为的必然事件_________.17.已知⊙的半径为4,⊙的半径为R,若⊙与⊙相切,且,则R的值为________.18.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______.三、解答题(共66分)19.(10分)如图,A,B,C三点的坐标分别为A(1,0),B(4,3),C(5,0),试在原图上画出以点A为位似中心,把△ABC各边长缩小为原来的一半的图形,并写出各顶点的坐标.20.(6分)如图,一枚运载火箭从地面处发射,当火箭到达点时,从位于地面处的雷达站测得的距离是6,仰角为;1后火箭到达点,此时测得仰角为(所有结果取小数点后两位).(1)求地面雷达站到发射处的水平距离;(2)求这枚火箭从到的平均速度是多少?(参考数据:,,,,,)21.(6分)综合与探究问题情境:(1)如图1,两块等腰直角三角板△ABC和△ECD如图所示摆放,其中∠ACB=∠DCE=90°,点F,H,G分别是线段DE,AE,BD的中点,A,C,D和B,C,E分别共线,则FH和FG的数量关系是,位置关系是.合作探究:(2)如图2,若将图1中的△DEC绕着点C顺时针旋转至A,C,E在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明,若不成立,请说明理由.(3)如图3,若将图1中的△DEC绕着点C顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明,若不成立,请说明理由.22.(8分)在Rt△ABC中,∠ACB=90°,AC=1,记∠ABC=α,点D为射线BC上的动点,连接AD,将射线DA绕点D顺时针旋转α角后得到射线DE,过点A作AD的垂线,与射线DE交于点P,点B关于点D的对称点为Q,连接PQ.(1)当△ABD为等边三角形时,①依题意补全图1;②PQ的长为;(2)如图2,当α=45°,且BD=时,求证:PD=PQ;(3)设BC=t,当PD=PQ时,直接写出BD的长.(用含t的代数式表示)23.(8分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?24.(8分)如图,已知抛物线y1=﹣x2+x+2与x轴交于A、B两点,与y轴交于点C,直线l是抛物线的对称轴,一次函数y2=kx+b经过B、C两点,连接AC.(1)△ABC是三角形;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)结合图象,写出满足y1>y2时,x的取值范围.25.(10分)如图,已知二次函数的图象与轴,轴分别交于A三点,A在B的左侧,请求出以下几个问题:(1)求点A的坐标;(2)求函数图象的对称轴;(3)直接写出函数值时,自变量x的取值范围.26.(10分)已知,如图,在平行四边形ABCD中,M是BC边的中点,E是边BA延长线上的一点,连接EM,分别交线段AD于点F、AC于点G.(1)证明:∽(2)求证:;

参考答案一、选择题(每小题3分,共30分)1、A【分析】直接利用对称轴为计算即可.【详解】∵,∴抛物线的对称轴是,故选:A.【点睛】本题主要考查二次函数的对称轴,掌握二次函数对称轴的求法是解题的关键.2、C【分析】根据反比例函数中k0,图像必过二、四象限即可解题.【详解】解:∵-10,根据反比例函数性质可知,反比例函数y=﹣的图象在第二、四象限,故选C.【点睛】本题考查了反比例函数的图像和性质,属于简单题,熟悉反比例函数的性质是解题关键.3、A【分析】连接OD,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,又由直径的长求出半径OD的长,在直角三角形ODE中,由DE及OD的长,利用勾股定理即可求出OE的长.【详解】解:如图所示,连接OD.

∵弦CD⊥AB,AB为圆O的直径,

∴E为CD的中点,

又∵CD=16,

∴CE=DE=CD=8,

又∵OD=AB=10,

∵CD⊥AB,∴∠OED=90°,

在Rt△ODE中,DE=8,OD=10,

根据勾股定理得:OE==6,

则OE的长度为6,

故选:A.【点睛】本题主要考查了垂径定理,勾股定理,解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理是解答此题的关键.4、D【分析】把代入原方程得到关于的一元一次方程,解方程即可.【详解】解:把代入原方程得:故选D.【点睛】本题考查的是一元二次方程的解的含义,掌握方程解的含义是解题的关键.5、A【解析】解答此题,先要求一元二次方程的两根,然后根据圆与圆的位置关系判断条件,确定位置关系.圆心距<两个半径和,说明两圆相交.【详解】解:解方程x2-6x+8=0得:

x1=2,x2=4,

∵O1O2=5,x2-x1=2,x2+x1=6,

∴x2-x1<O1O2<x2+x1.

∴⊙O1与⊙O2相交.

故选A.【点睛】此题综合考查一元二次方程的解法及两圆的位置关系的判断,关键解出两圆半径.6、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式==故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.7、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.8、D【解析】试题分析:利用因式分解法解方程即可.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选D.考点:解一元二次方程-因式分解法.9、D【分析】把代入程序中计算,知道满足条件,即可确定输出的结果.【详解】把代入程序,∵是分数,∴不满足输出条件,进行下一轮计算;把代入程序,∵不是分数∴满足输出条件,输出结果y=4,故选D.【点睛】本题考查程序运算,解题的关键是读懂程序的运算规则.10、A【解析】分析:从主视图上可以看出上下层数,从俯视图上可以看出底层有多少小正方体,从左视图上可以看出前后层数,综合三视图可得到答案.解答:解:从主视图上可以看出左面有两层,右面有一层;从左视图上看分前后两层,后面一层上下两层,前面只有一层,从俯视图上看,底面有3个小正方体,因此共有4个小正方体组成,故选A.二、填空题(每小题3分,共24分)11、【分析】先由一元二次方程x2-2x+a-2=0有实数根,得出a的取值范围,最后根据概率公式进行计算即可.【详解】解:∵一元二次方程x2-2x+a-2=0有实数根,

∴4-4(a-2)≥0,

∴a≤1,

∴a=-1,0,1,2,1.∴使得关于x的一元二次方程x2-2x+a-2=0有实数根概率为:.【点睛】考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使一元二次方程x2-2x+a-2=0有实数根情况数是解决本题的关键.12、3.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF==3,∴最短路线长为3.故答案为:3.【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.13、【分析】由题意直接根据特殊三角函数值,进行分析计算即可得出答案.【详解】解:∵在中,,,,∴,∴,∵,∴,∴.故答案为:.【点睛】本题考查锐角三角函数,熟练掌握三角函数定义以及特殊三角函数值进行分析是解题的关键.14、.【解析】直接利用概率求法进而得出答案.【详解】一个质地均匀的小正方体,六个面分别标有数字“”“”“”“”“”“”,随机掷一次小正方体,朝上一面的数字是奇数的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率公式是解题关键.15、1【分析】根据二次函数的定义得到且,然后解不等式和方程即可得到的值.【详解】∵函数是关于的二次函数,

∴且,解方程得:或(舍去),

∴.

故答案为:1.【点睛】本题考查二次函数的定义,关键是掌握二次函数的定义:一般地,形如(是常数,)的函数,叫做二次函数.16、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【点睛】此题考查事件的可能性:必然事件的概念.17、6或14【解析】⊙O1和⊙O2相切,有两种情况需要考虑:内切和外切.内切时,⊙O2的半径=圆心距+⊙O1的半径;外切时,⊙O2的半径=圆心距-⊙O1的半径.【详解】若⊙与⊙外切,则有4+R=10,解得:R=6;若⊙与⊙内切,则有R-4=10,解得:R=14,故答案为6或14.18、y=2(x+2)2﹣1【解析】直接根据“上加下减、左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2−1,由“上加下减”的原则可知,将二次函数y=2x2−1的图象向左平移2个单位可得到函数y=2(x+2)2−1,故答案是:y=2(x+2)2−1.【点睛】本题考查的是二次函数图象与几何变换,熟练掌握规律是解题的关键.三、解答题(共66分)19、各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【解析】根据题意,分别从AB,AC上截取它的一半找到对应点即可.【详解】如答图所示,△AB′C′,△AB″C″即是所求的三角形(画出一种即可).各顶点坐标分别为A(1,0),B′(2.5,1.5),C′(3,0)或A(1,0),B″(-0.5,-1.5),C″(-1,0).【点睛】本题考查了画位似图形.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.20、(1)雷达站到发射处的水平距离为4.38;(2)这枚火箭从到的平均速度为0.39.【分析】(1)根据余弦三角函数的定义,即可求解;(2)先求出AL的值,再求出BL的值,进而即可求解.【详解】(1)在中,,答:雷达站到发射处的水平距离为4.38;(2)在中,,在中,,∴,∴速度为0.39,答:这枚火箭从到的平均速度为0.39.【点睛】本题主要考查解直角三角形的实际应用,掌握三角函数的定义,是解题的关键.21、(1)FG=FH,FG⊥FH;(2)(1)中结论成立,证明见解析;(3)(1)中的结论成立,结论是FH=FG,FH⊥FG.理由见解析.【解析】试题分析:(1)证BE=AD,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;

(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;

(3)连接AD,BE,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:(1)∵CE=CD,AC=BC,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为相等,垂直.(2)答:成立,证明:∵CE=CD,AC=BC,∴△ACD≌△BCE,∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∴∠ACD=∠BCE,在△ACD和△BCE中∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠CXA=∠DXB,∴∴即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,FH⊥FG,结论是FH=FG,FH⊥FG点睛:三角形的中位线平行于第三边并且等于第三边的一半.22、(1)①详见解析;②1;(1)详见解析;(3)BD=.【分析】(1)①根据题意画出图形即可.②解直角三角形求出PA,再利用全等三角形的性质证明PQ=PA即可.(1)作PF⊥BQ于F,AH⊥PF于H.通过计算证明DF=FQ即可解决问题.(3)如图3中,作PF⊥BQ于F,AH⊥PF于H.设BD=x,则CD=x﹣t,,利用相似三角形的性质构建方程求解即可解决问题.【详解】(1)解:①补全图形如图所示:②∵△ABD是等边三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD•tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如图:∵PA⊥AD,∴∠PAD=90°由题意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF⊥BQ∴∠AHF=∠HFC=∠ACF=90°∴四边形ACFH是矩形∴∠CAH=90°,AH=CF∵∠ACH=∠DAP=90°∴∠CAD=∠PAH又∵∠ACD=∠AHP=90°∴△ACD≌△AHP(AAS)∴AH=AC=1∴CF=AH=1∵,BC=1,B,Q关于点D对称∴,∴∴F为DQ中点∴PF垂直平分DQ∴PQ=PD.(3)如图3中,作PF⊥BQ于F,AH⊥PF于H.设BD=x,则CD=x﹣t,∵PD=PQ,PF⊥DQ∴∵四边形AHFC是矩形∴∵△ACB∽△PAD∴∴∴∵△PAH∽△DAC∴∴解得∴.故答案是:(1)①详见解析;②1;(1)详见解析;(3).【点睛】本题是三角形综合题目,主要考查了三角形的旋转、等边三角形的性质、锐角三角函数、勾股定理、全等三角形的判定和性质、矩形的判定和性质,构造全等三角形、相似三角形、直角三角形是解题的关键.23、(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为1.

【解析】分析:(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作PE⊥x轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB=S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值.详解:根据题意,把,代入抛物线解析式可得,解得,抛物线的表达式为,,抛物线的顶点坐标为;如图1,过P作轴于点C,,,当时,,,即,设,则,,把P点坐标代入抛物线表达式可得,解得或,经检验,与点A重合,不合题意,舍去,所求的P点坐标为;当两个动点移动t秒时,则,,如图2,作轴于点E,交AB于点F,则,,,点A到PE的距离竽OE,点B到PE的距离等于BE,,且,,当时,S有最大值,最大值为1.

点睛:本题为二次函数的综合应用,涉及待定系数法、直角三角形的性质、二次函数的性质、三角形的面积及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中构造Rt△PAC是解题的关键,在(3)中用t表示出P、M的坐标,表示出PF的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.24、(1)直角;(2)P(,);(3)0<x<1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论