2022年黑龙江省集贤县九年级数学上册期末统考试题含解析_第1页
2022年黑龙江省集贤县九年级数学上册期末统考试题含解析_第2页
2022年黑龙江省集贤县九年级数学上册期末统考试题含解析_第3页
2022年黑龙江省集贤县九年级数学上册期末统考试题含解析_第4页
2022年黑龙江省集贤县九年级数学上册期末统考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.一次函数y=(k﹣1)x+3的图象经过点(﹣2,1),则k的值是()A.﹣1 B.2 C.1 D.02.已知圆与点在同一平面内,如果圆的半径为5,线段的长为4,则点()A.在圆上 B.在圆内 C.在圆外 D.在圆上或在圆内3.在同一平面直角坐标系中,若抛物线与关于y轴对称,则符合条件的m,n的值为()A.m=,n= B.m=5,n=-6 C.m=-1,n=6 D.m=1,n=-24.计算得()A.1 B.﹣1 C. D.5.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)6.如图,在△ABC中,AD⊥BC,垂足为点D,若AC=,∠C=45°,tan∠ABC=3,则BD等于()A.2 B.3 C. D.7.方程是关于x的一元二次方程,则m的值是()A. B.C. D.不存在8.五张完全相同的卡片上,分别写有数字1,2,3,4,5,现从中随机抽取一张,抽到的卡片上所写数字小于3的概率是()A. B. C. D.9.下列事件属于随机事件的是()A.旭日东升 B.刻舟求剑 C.拔苗助长 D.守株待兔10.已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a,b的大小关系为()A.a>b B.a<bC.a=b D.不能确定11.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为()A.1 B.2 C. D.12.如图⊙O的半径为5,弦心距,则弦的长是()A.4 B.6 C.8 D.5二、填空题(每题4分,共24分)13.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是______.14.写出一个图象的顶点在原点,开口向下的二次函数的表达式_____.15.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k,则既能使函数y=的图象经过第一、第三象限,又能使关于x的一元二次方程x2﹣kx+1=0有实数根的概率为_____.16.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.17.反比例函数的图像的两支曲线分别位于第二、四象限内,则应满足的条件是_________.18.如图所示,等腰三角形,,,…,(为正整数)的一直角边在轴上,双曲线经过所有三角形的斜边中点,,,…,,已知斜边,则点的坐标为_________.三、解答题(共78分)19.(8分)如图,已知点A(a,3)是一次函数y1=x+1与反比例函数y2=的图象的交点.(1)求反比例函数的解析式;(2)在y轴的右侧,当y1>y2时,直接写出x的取值范围;(3)求点A与两坐标轴围成的矩形OBAC的面积.20.(8分)如图,是的直径,是圆心,是圆上一点,且,是延长线上一点,与圆交于另一点,且.(1)求证:;(2)求的度数.21.(8分)如图,点是线段上的任意一点(点不与点重合),分别以为边在直线的同侧作等边三角形和等边三角形,与相交于点,与相交于点.(1)求证:;(2)求证:;(3)若的长为12cm,当点在线段上移动时,是否存在这样的一点,使线段的长度最长?若存在,请确定点的位置并求出的长;若不存在,请说明理由.22.(10分)已知:如图,B,C,D三点在上,,PA是钝角△ABC的高线,PA的延长线与线段CD交于点E.(1)请在图中找出一个与∠CAP相等的角,这个角是;(2)用等式表示线段AC,EC,ED之间的数量关系,并证明.23.(10分)如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.(1)求证:是的切线;(2)若,,求的边上的高.(3)在(2)的条件下,求的面积.24.(10分)二次函数y=ax2+bx+c中的x,y满足下表x…-1013…y…0310…不求关系式,仅观察上表,直接写出该函数三条不同类型的性质:(1);(2);(3).25.(12分)三根垂直地面的木杆甲、乙、丙,在路灯下乙、丙的影子如图所示.试确定路灯灯泡的位置,再作出甲的影子.(不写作法,保留作图痕迹)26.用列代数式或列方程(组)的方法,解决网络上流行的一个问题:法国新总统比法国第一夫人小24岁,美国新总统比美国第一夫人大24岁,法国新总统比美国新总统小32岁.求:美国第一夫人比法国第一夫人小多少岁?

参考答案一、选择题(每题4分,共48分)1、B【分析】函数经过点(﹣1,1),把点的坐标代入解析式,即可求得k的值.【详解】解:根据题意得:﹣1(k﹣1)+3=1,解得:k=1.故选B.【点睛】本题主要考查了函数的解析式与图象的关系,满足解析式的点一定在图象上,图象上的点一定满足函数解析式.2、B【分析】由题意根据圆的半径和线段的长进行大小比较,即可得出选项.【详解】解:因为圆的半径为5,线段的长为4,5>4,所以点在圆内.故选B.【点睛】本题考查同一平面内点与圆的位置关系,根据相关判断方法进行大小比较即可.3、D【解析】由两抛物线关于y轴对称,可知两抛物线的对称轴也关于y轴对称,与y轴交于同一点,由此可得二次项系数与常数项相同,一次项系数互为相反数,由此可得关于m、n的方程组,解方程组即可得.【详解】关于y轴对称,二次项系数与常数项相同,一次项系数互为相反数,∴,解之得,故选D.【点睛】本题考查了关于y轴对称的抛物线的解析式间的关系,弄清系数间的关系是解题的关键.4、A【分析】根据题意对原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.【详解】解:=1.故选:A.【点睛】本题考查分式的加减法,熟练掌握分式的加减法运算法则是解答本题的关键.5、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【点睛】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.6、A【解析】根据三角函数定义可得AD=AC•sin45°,从而可得AD的长,再利用正切定义可得BD的长.【详解】∵AC=6,∠C=45°∴AD=AC⋅sin45°=6×=6,∵tan∠ABC=3,∴=3,∴BD==2,故选A.【点睛】本题主要考查解直角三角形,三角函数的知识,熟记知识点是解题的关键.7、B【分析】根据一元二次方程的定义进行求解即可.【详解】由题知:,解得,∴故选:B.【点睛】本题考查了利用一元二次方程的定义求参数的值,熟知一元二次方程的定义是解题的关键.8、B【分析】用小于3的卡片数除以卡片的总数量可得答案.【详解】由题意可知一共有5种结果,其中数字小于3的结果有抽到1和2两种,所以.故选:B.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.9、D【分析】根据事件发生的可能性大小,逐一判断选项,即可.【详解】A、旭日东升是必然事件;B、刻舟求剑是不可能事件;C、拔苗助长是不可能事件;D、守株待兔是随机事件;故选:D.【点睛】本题主要考查随机事件的概念,掌握随机事件的定义,是解题的关键.10、D【解析】∵二次函数y=a(x+1)2-b(a≠0)有最小值,∴a>0,∵无论b为何值,此函数均有最小值,∴a、b大小无法确定.11、C【分析】连接OC,BC,过点O作OD⊥AC于D,可得OD//BC,利用平行线段成比例可知和AD=,利用勾股定理,可得,列出方程,即可求出OD的长.【详解】解:连接OC,BC,过点O作OD⊥AC于D,∴∠ADO=90°,∵AB为的直径,AB=4,,∴∠ACB=90°,OA=OC=,∴OD//BC,∴,∴AD=,在中,,∴,解得OD=;故选C.【点睛】本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键.12、C【解析】分析:连接OA,在直角三角形OAC中,OC=3,OA=5,则可求出AC,再根据垂径定理即可求出AB.解:连接OA,如下图所示:∵在直角三角形OAC中,OA=5,弦心距,∴AC=,又∵OC⊥AB,∴AB=2AC=2×4=1.故选A.二、填空题(每题4分,共24分)13、【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】由图可知,黑色方砖6块,共有16块方砖,

∴黑色方砖在整个地板中所占的比值,

∴小球最终停留在黑色区域的概率是,故答案为:.【点睛】本题考查了几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.14、y=﹣2x2(答案不唯一)【分析】由题意知,图象过原点,开口向下则二次项系数为负数,由此可写出满足条件的二次函数的表达式.【详解】解:由题意可得:y=﹣2x2(答案不唯一).故答案为:y=﹣2x2(答案不唯一).【点睛】本题考查了二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.15、.【分析】确定使函数的图象经过第一、三象限的k的值,然后确定使方程有实数根的k值,找到同时满足两个条件的k的值即可.【详解】解:这6个数中能使函数y=的图象经过第一、第三象限的有1,2这2个数,∵关于x的一元二次方程x2﹣kx+1=0有实数根,∴k2﹣4≥0,解得k≤﹣2或k≥2,能满足这一条件的数是:﹣3、﹣2、2这3个数,∴能同时满足这两个条件的只有2这个数,∴此概率为,故答案为:.16、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【点睛】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.17、【分析】根据反比例函数图象所在的象限求得,然后得到的取值范围即可.【详解】∵反比例函数的图象位于第二、四象限内,

∴,

则.故答案是:.【点睛】本题考查了反比例函数的图象的性质,重点是比例系数k的符号.18、【分析】先求出双曲线的解析式,设=2,=2,分别求出和的值,从中找到规律表示出的值,据此可求得点的坐标.【详解】解:∵,是等腰三角形,∴==4,∴的坐标是(-4,4),∴的坐标是(-2,2),∴双曲线解析式为,设=2,则=2,∴的坐标是(-4-2,2),∴的坐标是(-4-,),∴(-4-)=-4,∴=(负值舍去),∴=,设=2,则=2,同理可求得=,∴=,……,依此类推=,∴==,∴=+++……+=4+++……+=∴的坐标是(,),故答案是:(,).【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了等腰直角三角形的性质.三、解答题(共78分)19、(1)y2=;(2)x>2;(3)点A与两坐标轴围成的矩形OBAC的面积是1.【解析】(1)将点A的坐标代入一次函数的解析式,求得a值后代入反比例函数求得b的值后即可确定反比例函数的解析式;(2)y1>y2时y1的图象位于y2的图象的上方,据此求解.(3)根据反比例函数k值的几何意义即可求解.【详解】解:(1)将A(a,3)代入一次函数y1=x+1得a+1=3,解得a=2,∴A(2,3),将A(2,3)代入反比例函数得,解得k=1,∴(2)∵A(2,3),y1=x+1,∴在y轴的右侧,当y1>y2时,x的取值范围是x>2;(3)∵k=1,∴点A与两坐标轴围成的矩形OBAC的面积是1.【点睛】本题考查了反比例函数与一次函数的交点问题,能正确的确定点A的坐标是解答本题的关键,难度不大.20、(1)见解析;(2)【分析】(1)连接,利用等腰三角形的性质证得,,再利用等角的关系得;(2)根据(1)可直接求得的度数.【详解】(1)如图,连接.,,,,.又,,,(2)由(1)得,.【点睛】此题考查圆的性质,等腰三角形的性质,题中依据连接OB是解题的关键.21、(1)见解析;(2)见解析;(1)存在,请确定C点的位置见解析,MN=1.【分析】(1)根据题意证明△DCB≌△ACE即可得出结论;(2)由题中条件可得△ACE≌△DCB,进而得出△ACM≌△DCN,即CM=CN,△MCN是等边三角形,即可得出结论;(1)可先假设其存在,设AC=x,MN=y,进而由平行线分线段成比例即可得出结论.【详解】解:(1)∵△ACD与△BCE是等边三角形,∴AC=CD,CE=BC,

∴∠ACE=∠BCD,

在△ACE与△DCB中,,∴△ACE≌△DCB(SAS),∴DB=AE;(2)∵△ACE≌△DCB,∴∠CAE=∠BDC,

在△ACM与△DCN中,,∴△ACM≌△DCN,

∴CM=CN,

又∵∠MCN=180°-60°-60°=60°,

∴△MCN是等边三角形,

∴∠MNC=∠NCB=60°

即MN∥AB;(1)解:假设符合条件的点C存在,设AC=x,MN=y,

∵MN∥AB,∴,即,,当x=6时,ymax=1cm,即点C在点A右侧6cm处,且MN=1.【点睛】本题主要考查了全等三角形的判定及性质以及平行线分线段成比例的性质和二次函数问题,能够将所学知识联系起来,从而熟练求解.22、(1)∠BAP;(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.证明见解析.【分析】(1)根据等腰三角形∆ABC三线合一解答即可;(2)连接EB,由PA是△CAB的垂直平分线,得到EC=EB.,∠ECP=∠EBP,∠ECA=∠EBA.然后推出∠BAD=∠BED=90°,利用勾股定理可得EB2+ED2=BD2,找到BD2=2AB2,代入可求的EC2+ED2=2AC2的等量关系即可.【详解】(1)∵等腰三角形∆ABC且PA是钝角△ABC的高线∴PA是∠CAB的角平分线∴∠CAP=∠BAP(2)AC,EC,ED满足的数量关系:EC2+ED2=2AC2.证明:连接EB,与AD交于点F∵点B,C两点在⊙A上,∴AC=AB,∴∠ACP=∠ABP.∵PA是钝角△ABC的高线,∴PA是△CAB的垂直平分线.∵PA的延长线与线段CD交于点E,∴EC=EB.∴∠ECP=∠EBP.∴∠ECP—∠ACP=∠EBP—∠ABP.即∠ECA=∠EBA.∵AC=AD,∴∠ECA=∠EDA∴∠EBA=∠EDA∵∠AFB=∠EFD,∠BCD=45°,∴∠AFB+∠EBA=∠EFD+∠EDA=90°即∠BAD=∠BED=90°∴EB2+ED2=BD2.∵BD2=AB2+AD2,∴BD2=2AB2,∴EB2+ED2=2AB2,∴EC2+ED2=2AC2【点睛】本题考查了圆的性质、等腰三角形的性质以及勾股定理,这是一个综合题,注意数形结合.23、(1)见解析;(2)4.5;(3)27【分析】(1)根据等腰三角形的性质可得,结合切线的判定方法可得结论;(2)过点作于点,连接,结合中点及等腰三角形的性质可得,利用勾股定理可得DF的长;(3)根据两组对应角分别相等的两个三角形相似可得,利用相似三角形对应线段成比例可求得EO长,由三角形面积公式求解即可.【详解】(1)证明:∵,,∴,,∵,∴,∴,∴∵是圆的半径,∴是的切线;(2)如图,过点作于点,连接,∵点是的中点,,∴,,又∵,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论