广东省河源市重点中学2023学年高考考前模拟数学试题(含解析)_第1页
广东省河源市重点中学2023学年高考考前模拟数学试题(含解析)_第2页
广东省河源市重点中学2023学年高考考前模拟数学试题(含解析)_第3页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,内角A,B,C所对的边分别为a,b,c,且.若,的面积为,则()A.5 B. C.4 D.162.设是等差数列的前n项和,且,则()A. B. C.1 D.23.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为()A. B. C.0 D.4.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为()A. B. C. D.5.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题6.在中所对的边分别是,若,则()A.37 B.13 C. D.7.设等差数列的前n项和为,若,则()A. B. C.7 D.28.抛物线的焦点为,点是上一点,,则()A. B. C. D.9.已知某几何体的三视图如图所示,则该几何体的体积是()A. B.64 C. D.3210.设复数z=,则|z|=()A. B. C. D.11.在中,为边上的中点,且,则()A. B. C. D.12.已知集合,则为()A.[0,2) B.(2,3] C.[2,3] D.(0,2]二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,己知直线与函数的图象在y轴右侧的公共点从左到右依次为,,…,若点的横坐标为1,则点的横坐标为________.14.已知边长为的菱形中,,现沿对角线折起,使得二面角为,此时点,,,在同一个球面上,则该球的表面积为________.15.若复数z满足,其中i是虚数单位,则z的模是______.16.已知(为虚数单位),则复数________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.18.(12分)如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.(1)若,且恰为的左焦点,求的两条渐近线的方程;(2)若,且,求实数的值;(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.19.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大小;(2)若△ABC外接圆的半径为,求△ABC面积的最大值.20.(12分)已知.(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.21.(12分)已知不等式的解集为.(1)求实数的值;(2)已知存在实数使得恒成立,求实数的最大值.22.(10分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】

根据正弦定理边化角以及三角函数公式可得,再根据面积公式可求得,再代入余弦定理求解即可.【题目详解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故选:C【答案点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.2、C【答案解析】

利用等差数列的性质化简已知条件,求得的值.【题目详解】由于等差数列满足,所以,,.故选:C【答案点睛】本小题主要考查等差数列的性质,属于基础题.3、C【答案解析】

先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【题目详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【答案点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.4、B【答案解析】

分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【题目详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【答案点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.5、D【答案解析】

举例判断命题p与q的真假,再由复合命题的真假判断得答案.【题目详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【答案点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.6、D【答案解析】

直接根据余弦定理求解即可.【题目详解】解:∵,∴,∴,故选:D.【答案点睛】本题主要考查余弦定理解三角形,属于基础题.7、B【答案解析】

根据等差数列的性质并结合已知可求出,再利用等差数列性质可得,即可求出结果.【题目详解】因为,所以,所以,所以,故选:B【答案点睛】本题主要考查等差数列的性质及前项和公式,属于基础题.8、B【答案解析】

根据抛物线定义得,即可解得结果.【题目详解】因为,所以.故选B【答案点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.9、A【答案解析】

根据三视图,还原空间几何体,即可得该几何体的体积.【题目详解】由该几何体的三视图,还原空间几何体如下图所示:可知该几何体是底面在左侧的四棱锥,其底面是边长为4的正方形,高为4,故.故选:A【答案点睛】本题考查了三视图的简单应用,由三视图还原空间几何体,棱锥体积的求法,属于基础题.10、D【答案解析】

先用复数的除法运算将复数化简,然后用模长公式求模长.【题目详解】解:z====﹣﹣,则|z|====.故选:D.【答案点睛】本题考查复数的基本概念和基本运算,属于基础题.11、A【答案解析】

由为边上的中点,表示出,然后用向量模的计算公式求模.【题目详解】解:为边上的中点,,故选:A【答案点睛】在三角形中,考查中点向量公式和向量模的求法,是基础题.12、B【答案解析】

先求出,得到,再结合集合交集的运算,即可求解.【题目详解】由题意,集合,所以,则,所以.故选:B.【答案点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】

当时,得,或,依题意可得,可求得,继而可得答案.【题目详解】因为点的横坐标为1,即当时,,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,,所以,故,所以函数的关系式为.当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点.故答案为:1.【答案点睛】本题考查三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题.14、【答案解析】

分别取,的中点,,连接,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,由勾股定理可得、,再根据球的面积公式计算可得;【题目详解】如图,分别取,的中点,,连接,则易得,,,,由图形的对称性可知球心必在的延长线上,设球心为,半径为,,可得,解得,.故该球的表面积为.故答案为:【答案点睛】本题考查多面体的外接球的计算,属于中档题.15、【答案解析】

先求得复数,再由复数模的计算公式即得.【题目详解】,,则.故答案为:【答案点睛】本题考查复数的四则运算和求复数的模,是基础题.16、【答案解析】

解:故答案为:【答案点睛】本题考查复数代数形式的乘除运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析,【答案解析】

(1)根据题意设出事件,列出概率,运用公式求解;(2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【题目详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,,.所以X的分布表为:X012P所以.【答案点睛】本题是一道考查概率和期望的常考题型.18、(1);(2);(2)见解析.【答案解析】

(1)由圆的方程求出点坐标,得双曲线的,再计算出后可得渐近线方程;(2)设,由圆方程与双曲线方程联立,消去后整理,可得,,由先求出,回代后求得坐标,计算;(3)由已知得,设,由圆方程与双曲线方程联立,消去后整理,可解得,,求出,从而可得,由,可知满足要求的点不存在.【题目详解】(1)由题意圆方程为,令得,∴,即,∴,,∴渐近线方程为.(2)由(1)圆方程为,,设,由得,(*),,,,所以,即,解得,方程(*)为,即,,代入双曲线方程得,∵在第一、四象限,∴,,∴.(3)由题意,,,,,设由得:,,由得,解得,,,所以,,,当且仅当三点共线时,等号成立,∴轴上不存在点,使得.【答案点睛】本题考查求渐近线方程,考查圆与双曲线相交问题.考查向量的加法运算,本题对学生的运算求解能力要求较高,解题时都是直接求出交点坐标.难度较大,属于困难题.19、(1)B(2)【答案解析】

(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【题目详解】(1)因为b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因为,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因为a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,当且仅当a=c时取等号,即ac的最大值4,所以△ABC面积S即面积的最大值.【答案点睛】本题综合考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档题.20、(1)单调减区间为,单调增区间为;(2)详见解析;(3).【答案解析】

试题分析:(1)对函数求导后,利用导数和单调性的关系,可求得函数的单调区间.(2)构造函数,利用导数求得函数在上递减,且,则,故原不等式成立.(3)同(2)构造函数,对分成三类,讨论函数的单调性、极值和最值,由此求得的取值范围.试题解析:(1),当时,.解得.当时,解得.所以单调减区间为,单调增区间为.(2)设,当时,由题意,当时,恒成立.,∴当时,恒成立,单调递减.又,∴当时,恒成立,即.∴对于,恒成立.(3)因为.由(2)知,当时,恒成立,即对于,,不存在满足条件的;当时,对于,,此时.∴,即恒成立,不存在满足条件的;当时,令,可知与符号相同,当时,,,单调递减.∴当时,,即恒成立.综上,的取值范围为.点睛:本题主要考查导数和单调区间,导数与不等式的证明,导数与恒成立问题的求解方法.第一问求函数的单调区间,这是导数问题的基本题型,也是基本功,先求定义域,然后求导,要注意通分和因式分解.二、三两问一个是恒成立问题,一个是存在性问题,要注意取值是最大值还是最小值.21、(1);(2)4【答案解析】

(1)分类讨论,求解x的范围,取并集,得到绝对值不等式的解集,即得解;(2)转化原不等式为:,利用均值不等式即得解.【题目详解】(1)当时不等式可化为当时,不等式可化为;当时,不等式可化为;综上不等式的解集为.(2)由(1)有,,,,即而当且仅当:,即,即时等号成立∴,综上实数最大值为4.【答案点睛】本题考查了绝对值不等式的求解与不等式的恒成立问题,考查了学生综合分析,转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论