2022年海南省农垦实验中学数学高三第一学期期末检测试题含解析_第1页
2022年海南省农垦实验中学数学高三第一学期期末检测试题含解析_第2页
2022年海南省农垦实验中学数学高三第一学期期末检测试题含解析_第3页
2022年海南省农垦实验中学数学高三第一学期期末检测试题含解析_第4页
2022年海南省农垦实验中学数学高三第一学期期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.2.已知集合,则=()A. B. C. D.3.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件4.设集合则()A. B. C. D.5.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.6.已知,,,是球的球面上四个不同的点,若,且平面平面,则球的表面积为()A. B. C. D.7.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题8.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D.19.,则与位置关系是()A.平行 B.异面C.相交 D.平行或异面或相交10.已知,,由程序框图输出的为()A.1 B.0 C. D.11.“且”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既不充分也不必要条件12.设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.14.正方体中,是棱的中点,是侧面上的动点,且平面,记与的轨迹构成的平面为.①,使得;②直线与直线所成角的正切值的取值范围是;③与平面所成锐二面角的正切值为;④正方体的各个侧面中,与所成的锐二面角相等的侧面共四个.其中正确命题的序号是________.(写出所有正确命题的序号)15.函数的定义域为__________.16.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)18.(12分)已知数列满足(),数列的前项和,(),且,.(1)求数列的通项公式:(2)求数列的通项公式.(3)设,记是数列的前项和,求正整数,使得对于任意的均有.19.(12分)如图,在四棱锥中底面是菱形,,是边长为的正三角形,,为线段的中点.求证:平面平面;是否存在满足的点,使得?若存在,求出的值;若不存在,请说明理由.20.(12分)已知等差数列中,,数列的前项和.(1)求;(2)若,求的前项和.21.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.22.(10分)己知圆F1:(x+1)1+y1=r1(1≤r≤3),圆F1:(x-1)1+y1=(4-r)1.(1)证明:圆F1与圆F1有公共点,并求公共点的轨迹E的方程;(1)已知点Q(m,0)(m<0),过点E斜率为k(k≠0)的直线与(Ⅰ)中轨迹E相交于M,N两点,记直线QM的斜率为k1,直线QN的斜率为k1,是否存在实数m使得k(k1+k1)为定值?若存在,求出m的值,若不存在,说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2、D【解析】

先求出集合A,B,再求集合B的补集,然后求【详解】,所以.故选:D【点睛】此题考查的是集合的并集、补集运算,属于基础题.3、D【解析】

由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.4、C【解析】

直接求交集得到答案.【详解】集合,则.故选:.【点睛】本题考查了交集运算,属于简单题.5、D【解析】

如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.6、A【解析】

由题意画出图形,求出多面体外接球的半径,代入表面积公式得答案.【详解】如图,取BC中点G,连接AG,DG,则,,分别取与的外心E,F,分别过E,F作平面ABC与平面DBC的垂线,相交于O,则O为四面体的球心,由,得正方形OEGF的边长为,则,四面体的外接球的半径,球O的表面积为.故选A.【点睛】本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,是中档题.7、D【解析】

举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【点睛】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.8、B【解析】

过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.9、D【解析】结合图(1),(2),(3)所示的情况,可得a与b的关系分别是平行、异面或相交.选D.10、D【解析】试题分析:,,所以,所以由程序框图输出的为.故选D.考点:1、程序框图;2、定积分.11、A【解析】

画出“,,,所表示的平面区域,即可进行判断.【详解】如图,“且”表示的区域是如图所示的正方形,记为集合P,“”表示的区域是单位圆及其内部,记为集合Q,显然是的真子集,所以答案是充分非必要条件,故选:.【点睛】本题考查了不等式表示的平面区域问题,考查命题的充分条件和必要条件的判断,难度较易.12、C【解析】

连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,,且,,解得椭圆的离心率.故选:C【点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.14、①②③④【解析】

取中点,中点,中点,先利用中位线的性质判断点的运动轨迹为线段,平面即为平面,画出图形,再依次判断:①利用等腰三角形的性质即可判断;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,进而求解;③由,取为中点,则,则即为与平面所成的锐二面角,进而求解;④由平行的性质及图形判断即可.【详解】取中点,连接,则,所以,所以平面即为平面,取中点,中点,连接,则易证得,所以平面平面,所以点的运动轨迹为线段,平面即为平面.①取为中点,因为是等腰三角形,所以,又因为,所以,故①正确;②直线与直线所成角即为直线与直线所成角,设正方体的棱长为2,当点为中点时,直线与直线所成角最小,此时,;当点与点或点重合时,直线与直线所成角最大,此时,所以直线与直线所成角的正切值的取值范围是,②正确;③与平面的交线为,且,取为中点,则即为与平面所成的锐二面角,,所以③正确;④正方体的各个侧面中,平面,平面,平面,平面与平面所成的角相等,所以④正确.故答案为:①②③④【点睛】本题考查直线与平面的空间位置关系,考查异面直线成角,二面角,考查空间想象能力与转化思想.15、【解析】

根据函数成立的条件列不等式组,求解即可得定义域.【详解】解:要使函数有意义,则,即.则定义域为:.故答案为:【点睛】本题主要考查定义域的求解,要熟练掌握张建函数成立的条件.16、2【解析】

根据比赛场次,分析,画出图象,计算结果.【详解】画图所示,可知目前(五)班已经赛了2场.故答案为:2【点睛】本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)万;(Ⅱ)分布列见解析,;(Ⅲ)【解析】

(Ⅰ)根据比例关系直接计算得到答案.(Ⅱ)的可能取值为,计算概率得到分布列,再计算数学期望得到答案.(Ⅲ)英语测试成绩在70分以上的概率为,故,解得答案.【详解】(Ⅰ)样本中女生英语成绩在分以上的有人,故人数为:万人.(Ⅱ)8名男生中,测试成绩在70分以上的有人,的可能取值为:.,,.故分布列为:.(Ⅲ)英语测试成绩在70分以上的概率为,故,故.故的最小值为.【点睛】本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.18、(1)().(2),.(3)【解析】

(1)依题意先求出,然后根据,求出的通项公式为,再检验的情况即可;(2)由递推公式,得,结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,,,,.记,利用函数单调性可求的范围,从而列不等式可解.【详解】解:(1)因为数列满足()①;②当时,.检验当时,成立.所以,数列的通项公式为().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因为,所以,上式同除以,得,,即,所以,数列时首项为1,公差为1的等差数列,故,.(3)因为.所以,,,,.记,当时,.所以,当时,数列为单调递减,当时,.从而,当时,.因此,.所以,对任意的,.综上,.【点睛】本题考在数列通项公式的求法、等差数列的定义及通项公式、数列的单调性,考查考生的逻辑思维能力、运算求解能力以及化归与转化思想、分类讨论思想.19、证明见解析;2.【解析】

利用面面垂直的判定定理证明即可;由,知,所以可得出,因此,的充要条件是,继而得出的值.【详解】解:证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,而,所以平面.又,所以平面.因为平面,所以平面平面.由,知.所以,,.因此,的充要条件是,所以,.即存在满足的点,使得,此时.【点睛】本题主要考查平面与平面垂直的判定、三棱锥的体积等基础知识;考查空间想象能力、运算求解能力、推理论证能力和创新意识;考查化归与转化、函数与方程等数学思想,属于难题.20、(1),;(2).【解析】

(1)由条件得出方程组,可求得的通项,当时,,可得,当时,,得出是以1为首项,2为公比的等比数列,可求得的通项;(2)由(1)可知,,分n为偶数和n为奇数分别求得.【详解】(1)由条件知,,,当时,,即,当时,,是以1为首项,2为公比的等比数列,;(2)由(1)可知,,当n为偶数时,当n为奇数时,综上,【点睛】本题考查等差数列和等比数列的通项的求得,以及其前n项和,注意分n为偶数和n为奇数两种情况分别求得其数列的和,属于中档题.21、(1);(2)①可能是2件;②详见解析【解析】

(1)由一件手工艺品质量为B级的情形,并结合相互独立事件的概率公式,列式计算即可;(2)①先求得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,可知,分别令、、,可求出使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论