




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54° B.27° C.36° D.46°2.下列是一元二次方程的是()A.2x+1=0 B.x2+2x+3=0 C.y2+x=1 D.=13.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知200度近视眼镜镜片的焦距为0.5m,则y与x的函数关系式为()A.y=100x B.y=C.y=200x D.y=4.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.① B.② C.③ D.④5.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能6.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A.3 B. C. D.27.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.8.如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为(
)A. B. C. D.39.如图,l1∥l2∥l3,直线a,b与l1、l2、l3分别相交于A、B、C和点D、E、F.若,DE=4,则EF的长是()A. B. C.6 D.1010.如图,矩形ABCD中,AB=4,AD=8,E为BC的中点,F为DE上一动点,P为AF中点,连接PC,则PC的最小值是()A.4 B.8 C.2 D.4二、填空题(每小题3分,共24分)11.如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是______.12.若关于x的一元二次方程有实数根,则m的取值范围是___________.13.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.14.某中学为了了解学生数学课程的学习情况,在3000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3000名学生在该次数学考试中成绩小于60分的学生数是________.15.如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为______.16.如图,P为平行四边形ABCD边AD上一点,E、F分别为PB、PC的中点,ΔPEF、ΔPDC、ΔPAB的面积分别为S、S1、S1.若S=1,则S1+S1=.17.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_______个.18.已知点A(a,1)与点B(﹣3,b)关于原点对称,则ab的值为_____.三、解答题(共66分)19.(10分)如图,已知矩形ABCD.在线段AD上作一点P,使∠DPC=∠BPC.(要求:用尺规作图,保留作图痕迹,不写作法和证明)20.(6分)一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面.(1)求圆形滚轮的半径的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:).21.(6分)如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O交AC于点D,连接BD.(1)求证:∠A=∠CBD.(2)若AB=10,AD=6,M为线段BC上一点,请写出一个BM的值,使得直线DM与⊙O相切,并说明理由.22.(8分)如图,直线y=kx+b(b>0)与抛物线y=x2相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,于y轴相交于点C,设∆OCD的面积为S,且kS+8=0.(1)求b的值.(2)求证:点(y1,y2)在反比例函数y=的图像上.23.(8分)如图,为的直径,为上的两条弦,且于点,,交延长线于点,.(1)求的度数;(2)求阴影部分的面积24.(8分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.25.(10分)如图,在Rt△ABC中,∠C=90°,过AC上一点D作DE⊥AB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE.26.(10分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,.(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,,求的半径.
参考答案一、选择题(每小题3分,共30分)1、C【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.2、B【分析】根据一元二次方程的定义,即只含一个未知数,且未知数的最高次数为1的整式方程,对各选项分析判断后利用排除法求解.【详解】解:A、方程1x+1=0中未知数的最高次数不是1,是一元一次方程,故不是一元二次方程;B、方程x1+1x+3=0只含一个未知数,且未知数的最高次数为1的整式方程,故是一元二次方程;C、方程y1+x=1含有两个未知数,是二元二次方程,故不是一元二次方程;D、方程=1不是整式方程,是分式方程,故不是一元二次方程.故选:B.【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.是否符合定义的条件是作出判断的关键.3、A【解析】由于近视镜度数y(度)与镜片焦距x(米)之间成反比例关系可设y=kx,由200度近视镜的镜片焦距是0.5米先求得k【详解】由题意,设y=kx由于点(0.5,200)适合这个函数解析式,则k=0.5×200=100,∴y=100x故眼镜度数y与镜片焦距x之间的函数关系式为y=100x故选:A.【点睛】本题考查根据实际问题列反比例函数关系式,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.4、A【分析】根据题意得到原几何体的主视图,结合主视图选择.【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.5、A【解析】试题分析:本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键.设直线经过的点为A,若点A在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择.设直线经过的点为A,∵点A的坐标为(sin45°,cos30°),∴OA==,∵圆的半径为2,∴OA<2,∴点A在圆内,∴直线和圆一定相交.故选A.考点:1.直线与圆的位置关系;2.坐标与图形性质;3.特殊角的三角函数值.6、A【详解】解:∵AB=BC,∴∠BAC=∠C.∵∠ABC=120°,∴∠C=∠BAC=10°.∵∠C和∠D是同圆中同弧所对的圆周角,∴∠D=∠C=10°.∵AD为直径,∴∠ABD=90°.∵AD=6,∴AB=AD=1.故选A.7、B【分析】利用同角三角函数间的基本关系求出sinA的值即可.【详解】:∵Rt△ABC中,cosA=,
∴sinA==,
故选B.【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.8、B【解析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案.【详解】由图形折叠可得BE=EG,DF=FG,∵正方形ABCD的边长为3,BE=1,∴EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,∵EF2=EC2+CF2,∴(1+GF)2=22+(3-GF)2,解得GF=,∴EF=1+=.故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.9、C【分析】根据平行线分线段成比例可得,代入计算即可解答.【详解】解:∵l1∥l2∥l3,∴,即,解得:EF=1.故选:C.【点睛】本题主要考查平行线分线段成比例定理,熟悉定理是解题的关键.10、D【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当CP⊥P1P2时,PC取得最小值;由矩形的性质以及已知的数据即可知CP1⊥P1P2,故CP的最小值为CP1的长,由勾股定理求解即可.【详解】解:如图:当点F与点D重合时,点P在P1处,AP1=DP1,当点F与点E重合时,点P在P2处,EP2=AP2,∴P1P2∥DE且P1P2=DE当点F在ED上除点D、E的位置处时,有AP=FP由中位线定理可知:P1P∥DF且P1P=DF∴点P的运动轨迹是线段P1P2,∴当CP⊥P1P2时,PC取得最小值∵矩形ABCD中,AB=4,AD=8,E为BC的中点,∴△ABE、△CDE、△DCP1为等腰直角三角形,DP1=2∴∠BAE=∠DAE=∠DP1C=45°,∠AED=90°∴∠AP2P1=90°∴∠AP1P2=45°∴∠P2P1C=90°,即CP1⊥P1P2,∴CP的最小值为CP1的长在等腰直角CDP1中,DP1=CD=4,∴CP1=4∴PB的最小值是4.故选:D.【点睛】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.二、填空题(每小题3分,共24分)11、x>【详解】解:把(﹣1,0),(1,﹣2)代入二次函数y=x2+bx+c中,得:,解得:,那么二次函数的解析式是:,函数的对称轴是:,因而当y随x的增大而增大时,x的取值范围是:.故答案为.【点睛】本题考查待定系数法求二次函数解析式;二次函数的图象性质,利用数形结合思想解题是关键.12、【分析】根据根的判别式可得方程有实数根则,然后列出不等式计算即可.【详解】根据题意得:解得:故答案为:【点睛】本题考查的是一元二次方程的根的判别式,根据一元二次方程的根的情况确定与0的关系是关键.13、1:1.【解析】试题分析:∵△ABC与△DEF的相似比为1:1,∴△ABC与△DEF的周长比为1:1.故答案为1:1.考点:相似三角形的性质.14、1人【分析】根据频率分布直方图,求出在该次数学考试中成绩小于60分的频率,再求成绩小于60分的学生数.【详解】根据频率分布直方图,得在该次数学考试中成绩小于60分的频率是(0.002+0.006+0.012)×10=0.20∴在该次数学考试中成绩小于60分的学生数是3000×0.20=1.故答案为:1.【点睛】本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图提供的数据,求出频率,再求出学生数,是基础题.15、【分析】设OA交CF于K.利用面积法求出OA的长,再利用相似三角形的性质求出AB、OB即可解决问题;【详解】解:如图,设OA交CF于K.由作图可知,CF垂直平分线段OA,∴OC=CA=1,OK=AK,在Rt△OFC中,CF=,∴AK=OK=,∴OA=,∵∠AOB+∠AOF=90°,∠CFO+∠AOF=90°,∴∠AOB=∠CFO,又∵∠ABO=∠COF,∴△FOC∽△OBA,∴,∴,∴OB=,AB=,∴A(,),∴k=×=.故答案为:.【点睛】本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,反比例函数图象上的点的坐标特征,勾股定理,相似三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16、2.【详解】∵E、F分别为PB、PC的中点,∴EFBC.∴ΔPEF∽ΔPBC.∴SΔPBC=4SΔPEF=8s.又SΔPBC=S平行四边形ABCD,∴S1+S1=SΔPDC+SΔPAB=S平行四边形ABCD=8s=2.17、1【解析】设取走的红球有x个,根据概率公式可得方程,解之可得答案.【详解】设取走的红球有x个,根据题意,得:,解得:x=1,即取走的红球有1个,故答案为:1.【点睛】此题主要考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.18、-2【分析】根据两点关于原点对称,则两点的横、纵坐标都是互为相反数,可得a、b的值,根据有理数的乘法,可得答案.【详解】解:由点A(a,1)与点B(-2,b)关于原点对称,得
a=2,b=-1.
ab=(2)×(-1)=-2,
故答案为-2.【点睛】本题考查了关于原点对称的点的坐标,利用了关于原点对称的点的坐标规律是:横、纵坐标都是互为相反数.三、解答题(共66分)19、详见解析【分析】以为圆心,为半径画弧,以为直径画弧,两弧交于点,连接并延长交于点,利用全等三角形和角平分线的判定和性质可得.【详解】解:如图,即为所作图形:∠DPC=∠BPC.【点睛】本题是作图—复杂作图,作线段垂直平分线,涉及到角平分线的判定和性质,全等三角形的判定和性质,难度中等.20、(1);(2)【分析】(1)过点作于点,交于点,由平行得到,再根据相似三角形的性质得到,列出关于半径的方程,解方程即可得解;(2)在(1)结论的基础上结合已知条件,利用锐角三角函数解即可得解.【详解】解:(1)过点作于点,交于点,如图:∴∴∴设圆形滚轮的半径的长是∴,即∴∴圆形滚轮的半径的长是;(2)∵∴在中,∴.故答案是:(1);(2)【点睛】本题考查了解直角三角形以及相似三角形的判定和性质,在求线段长度时,可以通过建立方程模型来解决问题.21、(1)证明见解析;(2)BM=,理由见解析.【分析】(1)利用圆周角定理得到∠ADB=90°,然后就利用等角的余角相等得到结论;(2)如图,连接OD,DM,先计算出BD=8,OA=5,再证明Rt△CBD∽Rt△BAD,利用相似比得到BC=,取BC的中点M,连接DM、OD,如图,证明∠2=∠4得到∠ODM=90°,根据切线的判定定理可确定DM为⊙O的切线,然后计算BM的长即可.【详解】(1)∵AB为⊙O直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如图,连接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中点M,连接DM、OD,如图,∵DM为Rt△BCD斜边BC的中线,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM为⊙O的切线,此时BM=BC=.【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理,掌握切线的判定定理及圆周角定理是关键.22、(1)b=4(b>0);(2)见解析【分析】(1)根据直线解析式求OC和OD长,依据面积公式代入即可得;(2)联立方程,根据根与系数的关系即可证明.【详解】(1)∵D(0,b),C(-,0)∴由题意得OD=b,OC=-∴S=∴k•()+8=0∴b=4(b>0)(2)∵∴∴∴∴点(y1,y2)在反比例函数y=的图像上.【点睛】本题考查二次函数的性质及图象与直线的关系,联立方程组并求解是解答两图象交点问题的重要途径,理解图象与方程的关系是解答此题的关键.23、(1);(2).【分析】(1)根据圆周角定理和直角三角形的性质可以∠DCB的度数;(2)用扇形AOD的面积减去三角形OAF的面积乘2,得阴影部分面积.【详解】(1)证明:为的直径,为的弦,且,,,,,交延长线于点,,,,∴(2),,且,,,,,阴影部分的面积为:.【点睛】本题主要考查切线的性质及扇形面积的计算,掌握过切点的半径与切线垂直是解题的关键,学会用分割法求阴影部分面积.24、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OE⊥BD,,再由圆周角定理可得,从而得到∠OBE+∠DBC=90°,即,命题得证.(2)由勾股定理求出OC,再由△OBC的面积求出BE/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医保知识考试题库及答案:医保目录解读政策法规实战试题
- 2025年辅导员考试题库:学生思想政治教育方法前沿动态与核心技能试题
- 2025年中学教师资格《综合素质》教育教学能力提升试题汇编及答案
- 2025年高压电工考试题库:高压设备维护保养计划重点难点试题
- 2025年高尔夫球教练职业能力测试卷:高尔夫球运动教练员职业晋升试题
- 2025年高压电工安全事故应急处理事故预防措施设计与实施试题集
- 2025年小提琴专业水平测试卷:小提琴演奏与音乐交流与合作试题
- 2025年小学教师资格考试《综合素质》模拟面试题库:教育心理基础篇试题
- 2025年中学教师资格证考试《综合素质》学生心理辅导案例分析试卷含答案
- 2025年统计学专业期末考试题库:统计调查设计与实施实践应用试卷
- 无人机操控 教学设计公开课教案教学设计课件
- 2024 年普通高等学校招生全国统一考试新课标 I 卷-数学试卷-全国
- 《瑞幸咖啡财务造假案例分析》8400字(论文)
- 安全生产法律法规注册安全工程师考试(初级)试题与参考答案(2024年)一
- (试卷)2024贵州省初中学业水平考试·物理
- 云南省职业技能大赛(健康照护赛项)理论参考试题及答案
- 自然辩证法论述题146题带答案(可打印版)
- DB43T 2534-2022 电力气象服务技术规范
- 工程合伙人协议书范文模板下载电子版
- 体育赛事组织策划及执行方案手册
- 中医药适宜技术推广实施方案(3篇)
评论
0/150
提交评论