




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.2.如图,若为正整数,则表示的值的点落在()A.段① B.段② C.段③ D.段④3.关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定4.如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A. B. C. D.5.一元二次方程2x2+3x+5=0的根的情况为()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根6.样本中共有5个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()A.65 B.65 C.2 D.7.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(
).A. B. C. D.8.如图,点O为正五边形ABCDE外接圆的圆心,五边形ABCDE的对角线分别相交于点P,Q,R,M,N.若顶角等于36°的等腰三角形叫做黄金三角形,那么图中共有()个黄金三角形.A.5 B.10 C.15 D.209.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和B,与y轴的正半轴交于点C,下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0,其中正确的个数为()A.0个 B.1个 C.2个 D.3个10.如图,,,以下结论成立的是()A. B.C. D.以上结论都不对二、填空题(每小题3分,共24分)11.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是_____.12.计算:|﹣3|﹣sin30°=_____.13.如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第一象限,若点A的坐标为(4,0),则点E的坐标是_____.14.若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.15.将抛物线先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式是______.16.化简:-(sin60°﹣1)0﹣2cos30°=________________.17.如图,双曲线经过斜边的中点,与直角边交于点.过点作于点,连接,则的面积是__________.18.抛物线关于x轴对称的抛物线解析式为_______________.三、解答题(共66分)19.(10分)已知,为⊙的直径,过点的弦∥半径,若.求的度数.20.(6分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?21.(6分)如图,在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,直线经过,两点,抛物线的顶点为,对称轴与轴交于点.(1)求此抛物线的解析式;(2)求的面积;(3)在抛物线上是否存在一点,使它到轴的距离为4,若存在,请求出点的坐标,若不存在,则说明理由.22.(8分)如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BD=BC,将△AOB沿x轴从左向右以每秒一个单位的速度运动,当点O和点C重合时运动停止,设△AOB与△BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0<t≤2,2<t≤m,m<t<n时函数解析式不同).(1)点B的坐标为,点D的坐标为;(2)求S与t的函数解析式,并写出t的取值范围.23.(8分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AC=8,CE=4,求弧BD的长.(结果保留π)24.(8分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD在路灯光下的影长分别为BM、DN,在图中作出EF的影长.25.(10分)如图,在一块长8、宽6的矩形绿地内,开辟出一个矩形的花圃,使四周的绿地等宽,已知绿地的面积与花圃的面积相等,求花圃四周绿地的宽.26.(10分)小尧用“描点法”画二次函数的图像,列表如下:x…-4-3-2-1012…y…50-3-4-30-5…(1)由于粗心,小尧算错了其中的一个y值,请你指出这个算错的y值所对应的x=;(2)在图中画出这个二次函数的图像;(3)当y≥5时,x的取值范围是.
参考答案一、选择题(每小题3分,共30分)1、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.2、B【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x为正整数,从所给图中可得正确答案.【详解】解∵1.又∵x为正整数,∴1,故表示的值的点落在②.故选B.【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.3、C【解析】试题分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.解:∵a=3,b=﹣2,c=1,∴△=b2﹣4ac=4﹣12=﹣8<0,∴关于x的方程3x2﹣2x+1=0没有实数根.故选:C.考点:根的判别式.4、A【分析】如图,连接DP,BD,作DH⊥BC于H.当D、P、M共线时,P′B+P′M=DM的值最小,利用勾股定理求出DM,再利用平行线的性质即可解决问题.【详解】如图,连接DP,BD,作DH⊥BC于H.∵四边形ABCD是菱形,∴AC⊥BD,B、D关于AC对称,∴PB+PM=PD+PM,∴当D、P、M共线时,P′B+P′M=DM的值最小,∵CM=BC=2,∵∠ABC=120°,∴∠DBC=∠ABD=60°,∴△DBC是等边三角形,∵BC=6,∴CM=2,HM=1,DH=,在Rt△DMH中,DM===,∵CM∥AD,∴==,∴P′M=DM=.故选A.【点睛】本题考查轴对称﹣最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.5、D【分析】根据根的判别式即可求出答案.【详解】由题意可知:△=9﹣4×2×5=﹣31<0,故选:D.【点睛】本题考查的是一元二次方程系数与根的关系,当时,有两个不相等的实数根;当时,有两个相等的实数根;当时,没有实数根.6、C【分析】由样本平均值的计算公式列出关于a的方程,解出a,再利用样本方差的计算公式求解即可.【详解】由题意知(a+0+1+2+3)÷5=1,解得a=-1,∴样本方差为故选:C.【点睛】本题考查样本的平均数、方差求法,属基础题,熟记样本的平均数、方差公式是解答本题的关键7、D【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正确;D错误;故选D.【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.8、D【分析】根据正五边形的性质和黄金三角形的定义进行分析.【详解】根据题意,得图中的黄金三角形有△EMR、△ARQ、△BQP、△CNP、△DMN、△DER、△EAQ、△ABP、△BCN、△CDM、△DAB、△EBC、△ECA、△ACD、△BDE,△ABR,△BQC,△CDP,△DEN,△EAQ,共20个.故选D.【点睛】此题考查了正五边形的性质和黄金三角形的定义.注意:此图中所有顶角是锐角的等腰三角形都是黄金三角形.9、C【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,进而判断①;根据x=﹣2时,y>1可判断②;根据对称轴x=﹣1求出2a与b的关系,进而判断③.【详解】①由抛物线开口向下知a<1,∵对称轴位于y轴的左侧,∴a、b同号,即ab>1.∵抛物线与y轴交于正半轴,∴c>1,∴abc>1;故①正确;②如图,当x=﹣2时,y>1,则4a﹣2b+c>1,故②正确;③∵对称轴为x=﹣>﹣1,∴2a<b,即2a﹣b<1,故③错误;故选:C.【点睛】本题主要考查二次函数的图象和性质,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.10、C【分析】根据已知条件结合相似三角形的判定定理逐项分析即可.【详解】解:∵∠AOD=90°,设OA=OB=BC=CD=x∴AB=x,AC=x,AD=x,OC=2x,OD=3x,BD=2x,∴,∴∴.故答案为C.【点睛】本题主要考查了相似三角形的判定,①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.二、填空题(每小题3分,共24分)11、-1【解析】设另一根为,则1·=-1,解得,=-1,故答案为-1.12、【分析】利用绝对值的性质和特殊角的三角函数值计算即可.【详解】原式=.故答案为:.【点睛】本题主要考查绝对值的性质及特殊角的三角函数值,掌握绝对值的性质及特殊角的三角函数值是解题的关键.13、(6,6).【分析】利用位似变换的概念和相似三角形的性质进行解答即可.【详解】解:∵正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,∴,即解得,OD=6,OF=6,则点E的坐标为(6,6),故答案为:(6,6).【点睛】本题考查了相似三角形、正方形的性质以及位似变换的概念,掌握位似和相似的区别与联系是解答本题的关键.14、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【详解】解:∵x2﹣17x+60=0,∴(x﹣1)(x﹣12)=0,解得:x1=1,x2=12,∵三角形的两边长分别是4和6,当x=12时,6+4<12,不能组成三角形.∴这个三角形的第三边长是1.故答案为:1.【点睛】本题考查了三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.15、【分析】先确定抛物线y=x1的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移所得对应点的坐标为(1,1),然后根据顶点式写出新抛物线解析式.【详解】解:抛物线y=x1的顶点坐标为(0,0),点(0,0)先向右平移1个单位长度,再向上平移1个单位长度所得对应点的坐标为(1,1),所以新抛物线的解析式为y=(x-1)1+1故答案为y=(x-1)1+1.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.16、-1【分析】根据实数的性质即可化简求解.【详解】-(sin60°﹣1)0﹣2cos30°=-1-2×=-1-=-1故答案为:-1.【点睛】此题主要考查实数的运算,解题的关键是熟知特殊三角函数值的求解.17、1【分析】先证明△OED∽△OAB,得出相似比=,再根据反比例函数中k的几何意义得出S△AOC=S△DOE=×2=1,从而可得出△AOB的面积,最后由S△OBC=S△AOB-S△AOC可得出结果.【详解】解:∵∠OAB=90°,DE⊥OA,
∴DE∥AB,∴△OED∽△OAB,
∵D为OB的中点D,,∴.∵双曲线的解析式是y=,
∴S△AOC=S△DOE=×2=1,
∴S△AOB=4S△DOE=4,
∴S△OBC=S△AOB-S△AOC=1,
故答案为:1.【点睛】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点.18、【分析】由关于x轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线的顶点关于x轴对称的顶点,关于x轴对称,则开口方向与原来相反,得出二次项系数,最后写出对称后的抛物线解析式即可.【详解】解:抛物线的顶点为(3,-1),点(3,-1)关于x轴对称的点为(3,1),又∵关于x轴对称,则开口方向与原来相反,所以,∴抛物线关于x轴对称的抛物线解析式为.故答案为:.【点睛】本题考查了二次函数的图象与几何变换,解题的关键是抓住关于x轴对称点的特点.三、解答题(共66分)19、∠C=30°【分析】根据平行线的性质求出∠AOD,根据圆周角定理解答.【详解】解:∵OA∥DE,
∴∠AOD=∠D=60°,
由圆周角定理得,∠C=∠AOD=30°【点睛】本题考查的是圆周角定理和平行线的性质,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.20、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.【解析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.21、(1)y=﹣x2+x+2;(2);(3)存在一点P或,使它到x轴的距离为1【分析】(1)先根据一次函数的解析式求出A和C的坐标,再将点A和点C的坐标代入二次函数解析式即可得出答案;(2)先求出顶点D的坐标,再过D点作DM平行于y轴交AC于M,再分别以DM为底求△ADM和△DCM的面积,相加即可得出答案;(3)令y=1或y=-1,求出x的值即可得出答案.【详解】解:(1)直线y=﹣x+2中,当x=0时,y=2;当y=0时,0=﹣x+2,解得x=1∴点A、C的坐标分别为(0,2)、(1,0),把A(0,2)、C(1,0)代入解得,故抛物线的表达式为:y=﹣x2+x+2;(2)y=﹣x2+x+2∴抛物线的顶点D的坐标为,如图1,设直线AC与抛物线的对称轴交于点M直线y=﹣x+2中,当x=时,y=点M的坐标为,则DM=∴△DAC的面积为=;(3)当P到x轴的距离为1时,则①当y=1时,﹣x2+x+2=1,而,所以方程没有实数根②当y=-1时,﹣x2+x+2=-1,解得则点P的坐标为或;综上,存在一点P或,使它到x轴的距离为1.【点睛】本题考查的是二次函数,难度适中,需要熟练掌握“铅垂高、水平宽”的方法来求面积.22、(1)(2)当0<t≤2时,S=,当2<t≤5时,S=,当5<t<7时,S=t2﹣14t+1.【分析】(1)由图象可得当t=2时,点O与点B重合,当t=m时,△AOB在△BDC内部,可求点B坐标,过点D作DH⊥BC,可证四边形AOHD是矩形,可得AO=DH,AD=OH,由勾股定理可求BD的长,即可得点D坐标;(2)分三种情况讨论,由相似三角形的性质可求解.【详解】解:(1)由图象可得当t=2时,点O与点B重合,∴OB=1×2=2,∴点B(2,0),如图1,过点D作DH⊥BC,由图象可得当t=m时,△AOB在△BDC内部,∴4=×2×DH,∴DH=4,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,且DH⊥BC,∴∠ADH=∠DHO=90°,且∠AOB=90°,∴四边形AOHD是矩形,∴AO=DH,AD=OH,且AD=BC=BD,∴OH=BD,∵DB2=DH2+BH2,∴DB2=(DB﹣2)2+16,∴DB=5,∴AD=BC=OH=5,∴点D(5,4),故答案为:(2,0),(5,4);(2)∵OH=BD=BC=5,OB=2,∴m=,n==7,当0<t≤2时,如图2,∵S△BCD=BC×DH,∴S△BCD=10∵A'B'∥CD,∴△BB'E∽△BCD,∴=()=,∴S=10×=t2,当2<t≤5,如图3,∵OO'=t,∴BO'=t﹣2,FO'=(t﹣2),∵S=S△BB'E﹣S△BO'F=t2﹣×(t﹣2)2,∴S=﹣t2+t﹣;当5<t<7时,如图4,∵OO'=t,∴O'C=7﹣t,O'N=2(7﹣t),∵S=×O'C×O'N=×2(7﹣t)2,∴S=t2﹣14t+1.【点睛】本题考查二次函数性质,相似三角形的判定及性质定理,根据实际情况要分分段讨论利用相似三角形的性质求解是解题的关键.23、(1)见解析;(2)【分析】(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD∥AE,根据AE⊥EF即可得证;(2)作OG⊥AE,知AG=CG=AC=4,证四边形ODEG是矩形,得出OA=OB=OD=CG+CE=4,再证△ADE∽△ABD得AD2=192,据此得出BD的长及∠BAD的度数,利用弧长公式可得答案.【详解】(1)证明:连接OD,如图1所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)解:作OG⊥AE于点G,连接BD,如图2所示:则AG=CG=AC=4,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=4+4=8,∠DOG=90°,∴AB=2OA=16,∵AC=8,CE=4,∴AE=AC+CE=12,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴,即,∴,在Rt△ABD中,,在/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省盐城市东台第一教育集团2025年初三(承智班)下学期第三次月考语文试题试卷含解析
- 南京旅游职业学院《舞蹈作品赏析》2023-2024学年第一学期期末试卷
- 南京传媒学院《经典译本欣赏》2023-2024学年第一学期期末试卷
- 泉州工程职业技术学院《牙体解剖与口腔生理学》2023-2024学年第一学期期末试卷
- 宁波大学《篆书2》2023-2024学年第二学期期末试卷
- 山东旅游职业学院《物理化学实验Ⅲ(一)》2023-2024学年第二学期期末试卷
- 山西运城农业职业技术学院《奢侈品管理》2023-2024学年第二学期期末试卷
- 2025年现代物流管理考试试卷及答案
- 2025年音乐教育专业考试试卷及答案
- 2025年卫生健康系统岗位考试试题及答案
- DBS改善工具-T-I事务性流程改善-课件
- 山东大学毕业生登记表
- TD-T 1048-2016 耕作层土壤剥离利用技术规范
- 《心肺复苏及电除颤》
- Fe3+-Bi3+混合溶液各含量的测定
- 洗煤厂安全风险分级管控及隐患排查治理体系资料
- 国际大酒店弱电智能化设计方案
- 电路(1)智慧树知到答案章节测试2023年山东大学
- 毫针刺法技术操作规程
- 基于stm32的智能小车设计毕业设计论文
- 2023年中国国际工程咨询有限公司招聘笔试题库及答案解析
评论
0/150
提交评论