




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知三地顺次在同-直线上,甲、乙两人均骑车从地出发,向地匀速行驶.甲比乙早出发分钟;甲到达地并休息了分钟后,乙追上了甲.甲、乙同时从地以各自原速继续向地行驶.当乙到达地后,乙立即掉头并提速为原速的倍按原路返回地,而甲也立即提速为原速的二倍继续向地行驶,到达地就停止.若甲、乙间的距离(米)与甲出发的时间(分)之间的函数关系如图所示,则下列说法错误的是()A.甲、乙提速前的速度分别为米/分、米/分.B.两地相距米C.甲从地到地共用时分钟D.当甲到达地时,乙距地米2.如图,在圆内接四边形ABCD中,∠A:∠C=1:2,则∠A的度数等于()A.30° B.45° C.60° D.80°3.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球()A.10个 B.20个 C.30个 D.无法确定4.已知关于的二次函数的图象在轴上方,并且关于的分式方程有整数解,则同时满足两个条件的整数值个数有().A.2个 B.3个 C.4个 D.5个5.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135° B.122.5° C.115.5° D.112.5°6.已知二次函数y=﹣2x2﹣4x+1,当﹣3≤x≤2时,则函数值y的最小值为()A.﹣15 B.﹣5 C.1 D.37.下列汽车标志中,是中心对称图形的有()个.A.1 B.2 C.3 D.48.如图,反比例函数在第二象限的图象上有两点A、B,它们的横坐标分别为-1,-3.直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.249.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是()A.(2,-6) B.(-2,6) C.(-6,2) D.(-6,2)10.已知,二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是()x…-1013…y…0343…A.(2,0) B.(3,0) C.(4,0) D.(5,0)二、填空题(每小题3分,共24分)11.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为_____.12.如图,的直径垂直弦于点,且,,则弦__________.13.高为7米的旗杆在水平地面上的影子长为5米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.14.已知抛物线y=(1﹣3m)x2﹣2x﹣1的开口向上,设关于x的一元二次方程(1﹣3m)x2﹣2x﹣1=0的两根分别为x1、x2,若﹣1<x1<0,x2>2,则m的取值范围为_____.15.如图,正六边形ABCDEF内接于O,点M是边CD的中点,连结AM,若圆O的半径为2,则AM=____________.16.从实数中,任取两个数,正好都是无理数的概率为________.17.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=_____.18.如图在圆心角为的扇形中,半径,以为直径作半圆.过点作的平行线交两弧分别于点,则图中阴影部分的面积是_______.三、解答题(共66分)19.(10分)如图所示,中,,,将翻折,使得点落到边上的点处,折痕分别交边,于点、点,如果,那么______.20.(6分)如图,在四边形中,,.点在上,.(1)求证:;(2)若,,,求的长.21.(6分)如图所示,AD,BE是钝角△ABC的边BC,AC上的高,求证:.22.(8分)已知,关于x的方程(m﹣1)x2+2x﹣2=0为一元二次方程,且有两个不相等的实数根,求m的取值范围.23.(8分)一个不透明的口袋里装着分别标有数字,,0,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率;(2)从中任取一球,将球上的数字记为,然后把小球放回;再任取一球,将球上的数字记为,试用画树状图(或列表法)表示出点所有可能的结果,并求点在直线上的概率.24.(8分)如图,中,点在边上,,将线段绕点旋转到的位置,使得,连接,与交于点(1)求证:;(2)若,,求的度数.25.(10分)某汽车销售公司去年12月份销售新上市的一种新型低能耗汽车200辆,由于该型汽车的优越的经济适用性,销量快速上升,若该型汽车每辆的盈利为5万元,则平均每天可售8辆,为了尽量减少库存,汽车销售公司决定采取适当的降价措施,经调查发现,每辆汽车每降5000元,公司平均每天可多售出2辆,若汽车销售公司每天要获利48万元,每辆车需降价多少?26.(10分)已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,过点C作BD的平行线,过点D作AC的平行线,两线交于点P.①求证:四边形CODP是菱形.②若AD=6,AC=10,求四边形CODP的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】设出甲、乙提速前的速度,根据“乙到达B地追上甲”和“甲、乙同时从B出发,到相距900米”建立二元一次方程组求出速度即可判断A,然后根据乙到达C的时间求A、C之间的距离可判断B,根据乙到达C时甲距C的距离及此时速度可计算时间判断C,根据乙从C返回A时的速度和甲到达C时乙从C出发的时间即可计算路程判断出D.【详解】A.设甲提速前的速度为米/分,乙提速前的速度为米/分,由图象知,当乙到达B地追上甲时,有:,化简得:,当甲、乙同时从B地出发,甲、乙间的距离为900米时,有:,化简得:,解方程组:,得:,故甲提速前的速度为300米/分,乙提速前的速度为400米/分,故选项A正确;B.由图象知,甲出发23分钟后,乙到达C地,则A、C两地相距为:(米),故选项B正确;C.由图象知,乙到达C地时,甲距C地900米,这时,甲提速为(米/分),则甲到达C地还需要时间为:(分钟),所以,甲从A地到C地共用时为:(分钟),故选项C错误;D.由题意知,乙从C返回A时,速度为:(米/分钟),当甲到达C地时,乙从C出发了2.25分钟,此时,乙距A地距离为:(米),故选项D正确.故选:C.【点睛】本题为方程与函数图象的综合应用,正确分析函数图象,明确特殊点的意义是解题的关键.2、C【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.3、B【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x=1.经检验:x=1是原方程的解故选B.4、B【解析】关于的二次函数的图象在轴上方,确定出的范围,根据分式方程整数解,确定出的值,即可求解.【详解】关于的二次函数的图象在轴上方,则解得:分式方程去分母得:解得:当时,;当时,(舍去);当时,;当时,;同时满足两个条件的整数值个数有3个.故选:B.【点睛】考查分式方程的解,二次函数的图象与性质,熟练掌握分式方程以及二次函数的性质是解题的关键.5、D【解析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如图,在⊙O取点D,使点D与点O在AB的同侧.则.∵∠C与∠D是圆内接四边形的对角,∴∠C=180°﹣∠D=112.5°.故选D.6、A【分析】先将题目中的函数解析式化为顶点式,然后在根据二次函数的性质和x的取值范围,即可解答本题.【详解】∵二次函数y=﹣2x2﹣4x+1=﹣2(x+1)2+3,∴该函数的对称轴是直线x=﹣1,开口向下,∴当﹣3≤x≤2时,x=2时,该函数取得最小值,此时y=﹣15,故选:A.【点睛】本题考查二次函数的最值,解题的关键是将二次函数的一般式利用配方法化成顶点式,求最值时要注意自变量的取值范围.7、B【分析】根据中心对称图形的概念逐一进行分析即可得.【详解】第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形,故选B.【点睛】本题考查了中心对称图形,熟知中心对称图形是指一个图形绕某一个点旋转180度后能与自身完全重合的图形是解题的关键.8、C【解析】试题分析:x=-1时,y=6,x=-3时,y=2,所以点A(-1,6),点B(-3,2),应用待定系数法求得直线AB的解析式为y=2x+8,直线AB与x轴的交点C(-4,0),所以OC=4,点A到x轴的距离为6,所以△AOC的面积为=1.故选C.考点:待定系数法求一次函数解析式;坐标与图形.9、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:点A(-2,6)关于原点对称的点的坐标是(2,-6),
故选:A.【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.10、C【分析】根据(0,3)、(3,3)两点求得对称轴,再利用对称性解答即可.【详解】解:∵抛物线y=ax2+bx+c经过(0,3)、(3,3)两点,
∴对称轴x==1.5;
点(-1,0)关于对称轴对称点为(4,0),
因此它的图象与x轴的另一个交点坐标是(4,0).
故选C.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题3分,共24分)11、25【解析】试题解析:由题意12、【分析】先根据题意得出⊙O的半径,再根据勾股定理求出BE的长,进而可得出结论.【详解】连接OB,∵,,∴OC=OB=(CE+DE)=5,∵CE=3,∴OE=5−3=2,∵CD⊥AB,∴BE==.∴AB=2BE=.故答案为:.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.13、1【分析】根据同一时刻物体的高度与影长成比例解答即可.【详解】解:设此建筑物的高度为x米,根据题意得:,解得:x=1.故答案为:1.【点睛】本题考查了平行投影,属于基础题型,明确同一时刻物体的高度与影长成比例是解题的关键.14、﹣<m<【分析】首先由抛物线开口向上可得:1﹣3m>0,再由1<x1<0可得:2>3m,最后由x2>2可得:1﹣3m<,由以上三点即可求出m的取值范围.【详解】∵抛物线y=(1﹣3m)x2﹣2x﹣1的开口向上,∴1﹣3m>0,①∵﹣1<x1<0,∴当x=﹣1时,y>0,即2>3m,②∵x2>2,∴当x=2时,y<0,即1﹣3m<,③由①②③可得:﹣<m<,故答案为:﹣<m<.【点睛】本题考查了抛物线与x轴的交点的问题,解题时应掌握△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.15、【分析】连接AD,过M作MG⊥AD于G,根据正六边形的相关性质,求得AD,MD的值,再根据∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【详解】解:连接AD,过M作MG⊥AD于G,则由正六边形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案为.【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,作出辅助线构造直角三角形是解题的关键.16、【分析】画树状图展示所有等可能的结果数,再找出两次选到的数都是无理数的结果数,然后根据概率公式求解.【详解】画树状图为:则共有6种等可能的结果,其中两次选到的数都是无理数有()和()2种,所以两次选到的数都是无理数的概率.故答案为:.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.17、1.【分析】过点D作DM⊥OB,垂足为M,则DM=DE=2,在Rt△OEF中,利用三角形内角和定理可求出∠DFM=30°,在Rt△DMF中,由30°角所对的直角边等于斜边的一半可求出DF的长,此题得解.【详解】过点D作DM⊥OB,垂足为M,如图所示.∵OC是∠AOB的平分线,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=1.故答案为1.【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30°角所对的直角边等于斜边的一半,求出DF的长是解题的关键.18、【分析】如图,连接CE,可得AC=CE,由AC是半圆的直径,可得OA=OC=CE,根据平行线的性质可得∠COE=90°,根据含30°角的直角三角形的性质可得∠CEO=30°,即可得出∠ACE=60°,利用勾股定理求出OE的长,根据S阴影=S扇形ACE-S△CEO-S扇形AOD即可得答案.【详解】如图,连接CE,∵AC=6,AC、CE为扇形ACB的半径,∴CE=AC=6,∵OE//BC,∠ACB=90°,∴∠COE=180°-90°=90°,∴∠AOD=90°,∵AC是半圆的直径,∴OA=OC=CE=3,∴∠CEO=30°,OE==,∴∠ACE=60°,∴S阴影=S扇形ACE-S△CEO-S扇形AOD=--=,故答案为:【点睛】本题考查扇形面积、含30°角的直角三角形的性质及勾股定理,熟练掌握扇形面积公式并正确作出辅助线是解题关键.三、解答题(共66分)19、【分析】设BE=x,则AE=5-x=AF=A′F,CF=6-(5-x)=1+x,依据△A'CF∽△BCA,可得,即,进而得到.【详解】解:如图,由折叠可得,∠AFE=∠A′FE,
∵A′F∥AB,∴∠AEF=∠A′FE,
∴∠AEF=∠AFE,∴AE=AF,
由折叠可得,AF=A′F,
设BE=x,则AE=5-x=AF=A′F,CF=6-(5-x)=1+x,
∵A′F∥AB,∴△A′CF∽△BCA,
∴,即,解得x=,
∴.
故答案为:.【点睛】本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.20、(1)见解析;(2).【分析】(1)由AD∥BC、AB⊥BC可得出∠A=∠B=90°,由等角的余角相等可得出∠ADE=∠BEC,进而即可证出△ADE∽△BEC;
(2)根据相似三角形的性质即可得到结论.【详解】解:(1)证明:∵AD∥BC,AB⊥BC,
∴AB⊥AD,∠A=∠B=90°,
∴∠ADE+∠AED=90°.
∵∠DEC=90°,
∴∠AED+∠BEC=90°,
∴∠ADE=∠BEC,
∴△ADE∽△BEC;
(2)解:∵△ADE∽△BEC,∴,即,∴BE=.【点睛】本题考查了相似三角形的判定与性质以及平行线的性质,解题的关键是:(1)利用相似三角形的判定定理找出△ADE∽△BEC;(2)利用相似三角形的性质求出BE的长度.21、见解析.【分析】根据两角相等的两个三角形相似证明△ADC∽△BEC即可.【详解】证明:∵AD,BE分别是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(对顶角相等)∴△ADC∽△BEC∴.【点睛】本题考查了相似三角形的判定,熟练掌握形似三角形的判定方法是解答本题的关键.①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.22、且【分析】由题意根据判别式的意义得到=22﹣4(m﹣1)×(﹣2)>0,然后解不等式即可.【详解】解:根据题意得=22﹣4(m﹣1)×(﹣2)>0且m﹣1≠0,解得且m≠1,故m的取值范围是且m≠1.【点睛】本题考查一元二次方程的定义以及一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.23、(1)所抽取的数字恰好为负数的概率是;(2)点(x,y)在直线y=﹣x﹣1上的概率是.【分析】(1)四个数字中负数有2个,根据概率公式即可得出答案;
(2)根据题意列表得出所有等可能的情况数,找出点(x,y)落在直线y=-x-1上的情况数,再根据概率公式即可得出答案.【详解】(1)∵共有4个数字,分别是﹣3,﹣1,0,2,其中是负数的有﹣3,﹣1,∴所抽取的数字恰好为负数的概率是=;(2)根据题意列表如下:﹣3﹣102﹣3(﹣3,﹣3)(﹣1,﹣3)(0,﹣3)(2,﹣3)﹣1(﹣3,﹣1)(﹣1,﹣1)(0,﹣1)(2,﹣1)0(﹣3,0)(﹣1,0)(0,0)(2,0)2(﹣3,2)(﹣1,2)(0,2)(2,2)所有等可能的情况有16种,其中点(x,y)在直线y=﹣x﹣1上的情况有4种,则点(x,y)在直线y=﹣x﹣1上的概率是=.【点睛】/r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025黑龙江省建筑装饰工程公司装饰承包合同
- 银行的面试测试题及答案
- 2025合同规范在格式条款规制上的引领作用
- 南京社工考试题库及答案
- 2025工业园区物业管理服务合同
- 2025年合同能源管理项目申请报告
- 小学校长竞聘试题及答案
- 汉峰科技面试题库及答案
- 社会工作者的未来展望初级考试试题及答案
- 理想汽车c 面试题及答案
- 职业教育专业教学资源库建设工作方案和技术要求
- 江苏省徐州市2023-2024学年七年级下学期期末英语试卷(含答案解析)
- 江苏省住宅物业管理服务标准
- 2024年西藏初中学业水平考试生物试题(原卷版)
- 市场营销策划(本)-形考任务一(第一 ~ 四章)-国开(CQ)-参考资料
- 施工现场的交通与道路安全管理
- 2024新人教版初中英语单词表汇总(七-九年级)中考复习必背
- 常用危险化学品危险特性
- 酒店质检分析报告
- 我国圆明园文化遗产的资料
- 《血氨的检测与临床》课件
评论
0/150
提交评论