2022年重庆市彭水一中学数学九年级上册期末学业水平测试模拟试题含解析_第1页
2022年重庆市彭水一中学数学九年级上册期末学业水平测试模拟试题含解析_第2页
2022年重庆市彭水一中学数学九年级上册期末学业水平测试模拟试题含解析_第3页
2022年重庆市彭水一中学数学九年级上册期末学业水平测试模拟试题含解析_第4页
2022年重庆市彭水一中学数学九年级上册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,是的内切圆,切点分别是、,连接,若,则的度数是()A. B. C. D.2.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n=()A.0 B.3 C.16 D.93.下列标志中是中心对称图形的是()A. B. C. D.4.把二次函数配方后得()A. B.C. D.5.若两个相似三角形的周长之比是1:4,那么这两个三角形的面积之比是()A.1:4 B.1:2 C.1:16 D.1:86.方程的解是()A. B., C., D.7.如图,在△ABC中,点D、E分别在边AB、AC上,则在下列五个条件中:①∠AED=∠B;②DE∥BC;③=;④AD·BC=DE·AC;⑤∠ADE=∠C,能满足△ADE∽△ACB的条件有()A.1个 B.2 C.3个 D.4个8.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事,一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,前三天累计票房收入达10亿元,若设增长率为,则可列方程为()A. B.C. D.9.下列计算错误的是()A. B. C. D.10.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52°二、填空题(每小题3分,共24分)11.如图,已知AB是半圆O的直径,∠BAC=20°,D是弧AC上任意一点,则∠D的度数是_________.12.如图,在中,,,点在上,且,则______.______.13.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.14.如图,在△ABC中,D,E分别是AC,BC边上的中点,则三角形CDE的面积与四边形ABED的面积比等于____________15.如果,那么=.16.如图是水平放置的水管截面示意图,已知水管的半径为50cm,水面宽AB=80cm,则水深CD约为______cm.17.联结三角形各边中点,所得的三角形的周长与原三角形周长的比是_____.18.如图,在置于平面直角坐标系中,点的坐标为,点的坐标为,点是内切圆的圆心.将沿轴的正方向作无滑动滚动,使它的三边依次与轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2020次滚动后,内切圆的圆心的坐标是__________.三、解答题(共66分)19.(10分)(问题情境)如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.(探究展示)(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.(拓展延伸)(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.20.(6分)如图,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象有公共点A(1,a)、D(﹣2,﹣1).直线l与x轴垂直于点N(3,0),与一次函数和反比例函数的图象分别交于点B、C.(1)求一次函数与反比例函数的解析式;(2)根据图象回答,x在什么范围内,一次函数的值大于反比例函数的值;(3)求△ABC的面积.21.(6分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)画出关于原点对称的;(2)将绕顺时针旋转,画出旋转后得到的,并直接写出此过程中线段扫过图形的面积.(结果保留)22.(8分)自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线表示.(1)________;(2)求图1表示的售价与时间的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?23.(8分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+1.(1)若从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7,11,19,23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,24.(8分)已知□ABCD边AB、AD的长是关于x的方程=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?(2)当AB=3时,求□ABCD的周长.25.(10分)如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?26.(10分)二次函数上部分点的横坐标x与纵坐标y的对应值如下表:x…0123…y…300m…(1)直接写出此二次函数的对称轴;(2)求b的值;(3)直接写出表中的m值,m=;(4)在平面直角坐标系xOy中,画出此二次函数的图象.

参考答案一、选择题(每小题3分,共30分)1、C【分析】由已知中∠A=100°,∠C=30°,根据三角形内角和定理,可得∠B的大小,结合切线的性质,可得∠DOE的度数,再由圆周角定理即可得到∠DFE的度数.【详解】解:∠B=180°−∠A−∠C=180−100°−30°=50°

∠BDO+∠BEO=180°

∴B、D、O、E四点共圆

∴∠DOE=180°−∠B=180°−50°=130°

又∵∠DFE是圆周角,∠DOE是圆心角

∠DFE=∠DOE=65°

故选:C.【点睛】本题考查的知识点是圆周角定理,切线的性质,其中根据切线的性质判断出B、D、O、E四点共圆,进而求出∠DOE的度数是解答本题的关键.2、C【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m+1.故设抛物线解析式为y=(x+m+1)2,直接将A(m,n)代入,通过解方程来求n的值.【详解】∵抛物线y=x2+bx+c过点A(m,n),B(m+8,n),∴对称轴是x==m+1.又∵抛物线y=x2+bx+c与x轴只有一个交点,∴设抛物线解析式为y=(x﹣m﹣1)2,把A(m,n)代入,得n=(m﹣m+1)2=2,即n=2.故选:C.【点睛】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.3、B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;

B、是中心对称图形,符合题意;

C、既不是轴对称图形,也不是中心对称的图形,不合题意;

D、是轴对称图形,不是中心对称的图形,不合题意.

故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.4、B【分析】运用配方法把一般式化为顶点式即可.【详解】解:==故选:B【点睛】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键.5、C【分析】根据相似三角形的面积的比等于相似比的平方可得答案.【详解】解:∵相似三角形的周长之比是1:4,∴对应边之比为1:4,∴这两个三角形的面积之比是:1:16,故选C.【点睛】此题主要考查了相似三角形的性质,关键是掌握相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.6、B【分析】用因式分解法求解即可得到结论.【详解】∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:,.故选:B.【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解答本题的关键.7、D【分析】根据相似三角形的判定定理判断即可.【详解】解:①由∠AED=∠B,∠A=∠A,则可判断△ADE∽△ACB;②DE∥BC,则有∠AED=∠C,∠ADE=∠B,则可判断△ADE∽△ACB;③=,∠A=∠A,则可判断△ADE∽△ACB;④AD·BC=DE·AC,可化为,此时不确定∠ADE=∠ACB,故不能确定△ADE∽△ACB;⑤由∠ADE=∠C,∠A=∠A,则可判断△ADE∽△ACB;所以能满足△ADE∽△ACB的条件是:①②③⑤,共4个,故选:D.【点睛】此题考查了相似三角形的判定,关键是掌握相似三角形的三种判定定理.8、D【分析】根据题意可得出第二天的票房为,第三天的票房为,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为,由题意可得出,第二天的票房为,第三天的票房为,因此,.故选:D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.9、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A:,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【点睛】此题考查算术平方根,依据,进行判断.10、C【详解】∵△ABC∽△DEF,∴∠B=∠E,在△ABC中,∠A=110°,∠C=28°,∴∠B=180°-∠A-∠C=42°,∴∠E=42°,故选C.二、填空题(每小题3分,共24分)11、110°【解析】试题解析:∵AB是半圆O的直径故答案为点睛:圆内接四边形的对角互补.12、【分析】在Rt△ABC中,根据,可求得AC的长;在Rt△ACD中,设CD=x,则AD=BD=8-x,根据勾股定理列方程求出x值,从而求得结果.【详解】解:在Rt△ABC中,∵,∴AC=BC=1.设CD=x,则BD=8-x=AD,在Rt△ACD中,由勾股定理得,x2+12=(8-x)2,解得x=2.∴CD=2,AD=5,∴.故答案为:1;.【点睛】本题考查解直角三角形,掌握相关概念是解题的关键.13、4【解析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.14、1:3【分析】根据中位线的定义可得:DE为△ABC的中位线,再根据中位线的性质可得DE∥AB,且,从而证出△CDE∽△CAB,根据相似三角形的性质即可求出,从而求出三角形CDE的面积与四边形ABED的面积比.【详解】解:∵D,E分别是AC,BC边上的中点,∴DE为△ABC的中位线∴DE∥AB,且∴△CDE∽△CAB∴∴故答案为:1:3.【点睛】此题考查的是中位线的性质和相似三角形的判定及性质,掌握中位线的性质、用平行证相似和相似三角形的面积比等于相似比的平方是解决此题的关键.15、【解析】试题分析:本题主要考查的就是比的基本性质.根据题意可得:=+=+1=+1=.16、1【解析】连接OA,设CD为x,由于C点为弧AB的中点,CD⊥AB,根据垂径定理的推理和垂径定理得到CD必过圆心0,即点O、D、C共线,AD=BD=AB=40,在Rt△OAD中,利用勾股定理得(50-x)2+402=502,然后解方程即可.【详解】解:连接OA、如图,设⊙O的半径为R,

∵CD为水深,即C点为弧AB的中点,CD⊥AB,∴CD必过圆心O,即点O、D、C共线,AD=BD=AB=40,

在Rt△OAD中,OA=50,OD=50-x,AD=40,

∵OD2+AD2=OA2,

∴(50-x)2+402=502,解得x=1,

即水深CD约为为1.

故答案为;1【点睛】本题考查了垂径定理的应用:从实际问题中抽象出几何图形,然后垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.17、1:1.【分析】根据D、E、F分别是AB、BC、AC的中点,得出△DEF∽△ABC,然后利用相似三角形周长比等于相似比,可得出答案.【详解】如图,∵D、E、F分别是AB、BC、AC的中点,∴DEAC,DE∥AC,∴△DEF∽△CAB,∴所得到的△DEF与△ABC的周长之比是:1:1.故答案为1:1.【点睛】本题考查了相似三角形的判定与性质和三角形中位线定理的理解和掌握,解答此题的关键是利用了相似三角形周长比等于相似比.18、(8081,1)【分析】由勾股定理得出AB=,得出Rt△OAB内切圆的半径==1,因此P的坐标为(1,1),由题意得出P3的坐标(3+5+4+1,1),得出规律:每滚动3次一个循环,由2020÷3=673…1,即可得出结果.【详解】解:∵点A的坐标为(0,4),点B的坐标为(3,0),∴OA=4,OB=3,∴AB=∴Rt△OAB内切圆的半径==1,∴P的坐标为(1,1),P2的坐标为(3+5+4-1,1),即(11,1)∵将Rt△OAB沿x轴的正方向作无滑动滚动,使它的三边依次与x轴重合,第一次滚动后圆心为P1,第二次滚动后圆心为P2,…,设P1的横坐标为x,根据切线长定理可得5-(x-3)+3-(x-3)=4解得:x=5∴P1的坐标为(3+2,1)即(5,1)∴P3(3+5+4+1,1),即(13,1),每滚动3次一个循环,∵2020÷3=673…1,∴第2020次滚动后,Rt△OAB内切圆的圆心P2020的横坐标是673×(3+5+4)+5,即P2020的横坐标是8081,∴P2020的坐标是(8081,1);故答案为:(8081,1).【点睛】本题考查了三角形的内切圆与内心、切线长定理、勾股定理、坐标与图形性质等知识;根据题意得出规律是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)AM=DE+BM成立,证明见解析;(3)①结论AM=AD+MC仍然成立;②结论AM=DE+BM不成立.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,易证△ADE≌△NCE,得到AD=CN,再证明AM=NM即可;(2)过点A作AF⊥AE,交CB的延长线于点F,易证△ABF≌△ADE,从而证明AM=FM,即可得证;(3)AM=DE+BM需要四边形ABCD是正方形,故不成立,AM=AD+MC仍然成立.【详解】(1)延长AE、BC交于点N,如图1(1),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.②结论AM=DE+BM不成立.【点睛】此题主要考查正方形的性质与全等三角形的判定与性质,解题的关键是熟知全等三角形的判断与性质.20、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值;(3)S△ABC=.【解析】试题分析:(1)由反比例函数经过点D(﹣2,﹣1),即可求得反比例函数的解析式;然后求得点A的坐标,再利用待定系数法求得一次函数的解析式;(2)结合图象求解即可求得x在什么范围内,一次函数的值大于反比例函数的值;(3)首先过点A作AE⊥x轴交x轴于点E,由直线l与x轴垂直于点N(3,0),可求得点E,B,C的坐标,继而求得答案.试题解析:(1)∵反比例函数经过点D(﹣2,﹣1),∴把点D代入y=(m≠0),∴﹣1=,∴m=2,∴反比例函数的解析式为:y=,∵点A(1,a)在反比例函数上,∴把A代入y=,得到a==2,∴A(1,2),∵一次函数经过A(1,2)、D(﹣2,﹣1),∴把A、D代入y=kx+b(k≠0),得到:,解得:,∴一次函数的解析式为:y=x+1;(2)如图:当﹣2<x<0或x>1时,一次函数的值大于反比例函数的值;(3)过点A作AE⊥x轴交x轴于点E,∵直线l⊥x轴,N(3,0),∴设B(3,p),C(3,q),∵点B在一次函数上,∴p=3+1=4,∵点C在反比例函数上,∴q=,∴S△ABC=BC•EN=×(4﹣)×(3﹣1)=.【点睛】本题考查了一次函数与反比例函数的交点问题,掌握待定系数法求函数解析式是解题的关键.21、(1)如图所示,见解析;(2)【分析】(1)利用画中心对称图形的作图方法直接画出关于原点对称的即可;(2)利用画旋转图形的作图方法直接画出,并利用扇形公式求出线段扫过图形的面积.【详解】解:(1)如图所示(2)作图见图;由题意可知线段扫过图形的面积为扇形利用扇形公式:.【点睛】本题考查中心对称图形以及旋转图形的作图,熟练掌握相关作图技巧以及利用扇形公式是解题关键.22、(1);(2);(3)当20天或40天,最小利润为10元千克【分析】(1)把代入可得结论;(2)当时,设,把,代入;当时,设,把,代入,分别求解即可;(3)设利润为,分两种情形:当时、当时,利用二次函数的性质分别求解即可.【详解】解:(1)把代入,得到,故答案为:.(2)当时,设,把,代入得到,解得,.当时,设,把,代入得到,解得,.综上所述,.(3)设利润为.当时,,当时,有最小值,最小值为10(元千克).当时,,当时,最小利润(元千克),综上所述,当20天或40天,最小利润为10元千克.【点睛】本题考查二次函数的应用、一次函数的性质、待定系数法等知识,解题的关键从函数图象中获取信息,利用待定系数法求得解析式.23、(1);(2)【分析】(1)直接根据概率公式计算可得;

(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解:(1)因为7,11,19,23共有4个数,其中素数7只有1个,

所以从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是,

故答案为.(2)由题意画树状图如下:由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论