2022年重庆市万州区数学九年级上册期末复习检测试题含解析_第1页
2022年重庆市万州区数学九年级上册期末复习检测试题含解析_第2页
2022年重庆市万州区数学九年级上册期末复习检测试题含解析_第3页
2022年重庆市万州区数学九年级上册期末复习检测试题含解析_第4页
2022年重庆市万州区数学九年级上册期末复习检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,以△ABC的三条边为边,分别向外作正方形,连接EF,GH,DJ,如果△ABC的面积为8,则图中阴影部分的面积为()A.28 B.24 C.20 D.162.如图,矩形ABCD中,AB=4,BC=3,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1-S2为()A. B. C. D.63.若反比例函数的图象上有两点P1(1,y1)和P2(2,y2),那么()A.y1>y2>0 B.y2>y1>0 C.y1<y2<0 D.y2<y1<04.下列一元二次方程中有两个相等实数根的是()A.2x2-6x+1=0 B.3x2-x-5=0 C.x2+x=0 D.x2-4x+4=05.已知一个几何体如图所示,则该几何体的主视图是()A. B.C. D.6.对于函数y=,下列说法错误的是()A.它的图像分布在第一、三象限 B.它的图像与直线y=-x无交点C.当x>0时,y的值随x的增大而增大 D.当x<0时,y的值随x的增大而减小7.如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是()A. B. C. D.8.在美术字中,有些汉字是中心对称图形,下面的汉字不是中心对称图形的是()A. B. C. D.9.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A.20° B.25° C.30° D.35°10.如图,二次函数的最大值为3,一元二次方程有实数根,则的取值范围是A.m≥3 B.m≥-3 C.m≤3 D.m≤-3二、填空题(每小题3分,共24分)11.在一个不透明的口袋中,装有4个红球和若干个白球,这些球除颜色外其余都相同,如果摸到红球的概率是,那么口袋中有白球_____个12.数据1、2、3、2、4的众数是______.13.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是14.在中,,,,则的值是__________.15.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab=.16.如图,在中,,若,则__________.17.如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为______.18.一个盒子中装有个红球,个白球和个蓝球,这些球除了颜色外都相同,从中随机摸出两个球,能配成紫色的概率为_____.三、解答题(共66分)19.(10分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字.小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜.你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由.20.(6分)如图,抛物线(a≠0)经过A(-1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.21.(6分)如图1,中,,是的中点,平分交于点,在的延长线上且.(1)求证:四边形是平行四边形;(2)如图2若四边形是菱形,连接,,与交于点,连接,在不添加任何辅助线的情况下,请直接写出图2中的所有等边三角形.22.(8分)某校九年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为每千克8元,下面是他们在活动结束后的对话.小丽;如果以每千克10元的价格销售,那么每天可售出300千克.小强:如果每千克的利润为3元,那么每天可售出250千克.小红:如果以每千克13元的价格销售,那么每天可获取利润750元.(1)已知该水果每天的销售量y(千克)与销售单价x(元)之间存在一次的函数关系,请根据他们的对话,判决该水果每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系,并求出这个函数关系式;(2)设该超市销售这种水果每天获取的利润为W(元),求W(元)与x(元)之间的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3)当销售利润为600元并且尽量减少库存时,销售单价为每千克多少元?23.(8分)某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)请将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有人达标;(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?24.(8分)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.25.(10分)解下列两题:(1)已知,求的值;(2)已知α为锐角,且2sinα=4cos30°﹣tan60°,求α的度数.26.(10分)如图,是的直径,,,连接交于点.(1)求证:是的切线;(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,根据全等三角形的性质得到EM=CN,于是得到S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,于是得到结论.【详解】解:过E作EM⊥FA交FA的延长线于M,过C作CN⊥AB交AB的延长线于N,∴∠M=∠N=90°,∠EAM+∠MAC=∠MAC+∠CAB=90°,∴∠EAM=∠CAB∵四边形ACDE、四边形ABGF是正方形,∴AC=AE,AF=AB,∴∠EAM≌△CAN,∴EM=CN,∵AF=AB,∴S△AEF=AF•EM,S△ABC=AB•CN=8,∴S△AEF=S△ABC=8,同理S△CDJ=S△BHG=S△ABC=8,∴图中阴影部分的面积=3×8=24,故选:B.【点睛】本题主要考查了正方形的性质,全等三角形判定和性质,正确的作辅助线是解题的关键.2、A【解析】根据图形可以求得BF的长,然后根据图形即可求得S1-S2的值.【详解】∵在矩形ABCD中,AB=4,BC=3,F是AB中点,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故选A.【点睛】本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.3、A【详解】∵点P1(1,y1)和P2(2,y2)在反比例函数的图象上,∴y1=1,y2=,∴y1>y2>1.故选A.4、D【解析】试题分析:选项A,△=b2﹣4ac=(﹣6)2﹣4×2×1=28>0,即可得该方程有两个不相等的实数根;选项B△=b2﹣4ac=(﹣1)2﹣4×3×(﹣5)=61>0,即可得该方程有两个不相等的实数根;选项C,△=b2﹣4ac=12﹣4×1×0=1>0,即可得该方程有两个不相等的实数根;选项D,△=b2﹣4ac=(﹣4)2﹣4×1×4=0,即可得该方程有两个相等的实数根.故选D.考点:根的判别式.5、A【分析】主视图是从物体正面看,所得到的图形.【详解】该几何体的主视图是:故选:A【点睛】本题考查了三视图的知识,主视图是从物体正面看到的图,掌握定义是关键.6、C【解析】A.k=1>0,图象位于一、三象限,正确;B.∵y=−x经过二、四象限,故与反比例函数没有交点,正确;C.当x>0时,y的值随x的增大而增大,错误;D.当x<0时,y的值随x的增大而减小,正确,故选C.7、D【分析】首先将代入二次函数,求出,然后利用根的判别式和求根公式即可判定的取值范围.【详解】将代入二次函数,得∴∴方程为∴∵∴故答案为D.【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.8、A【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【详解】A、不是中心对称图形,故此选项符合题意;B、是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项不符合题意;D、是中心对称图形,故此选项不符合题意;故选:A.【点睛】本题考查中心对称图形的概念,解题的关键是熟知中心图形的定义.9、B【解析】由旋转的性质和正方形的性质可得∠FOC=40°,AO=OD=OC=OF,∠AOC=90°,再根据等腰三角形的性质可求∠OFA的度数.【详解】∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OFA=25°故选B.【点睛】本题考查了旋转的性质,正方形的性质,等腰三角形的性质,熟练运用旋转的性质解决问题是本题的关键.10、C【解析】方程ax2+bx+c-m=0有实数相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,结合图象可得出m的范围.【详解】方程ax2+bx+c-m=0有实数根,相当于y=ax2+bx+c(a≠0)平移m个单位与x轴有交点,又∵图象最高点y=3,∴二次函数最多可以向下平移三个单位,∴m≤3,故选:C.【点睛】本题主要考查二次函数图象与一元二次方程的关系,掌握二次函数图象与x轴交点的个数与一元二次方程根的个数的关系是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】设白球有x个,根据摸到红球的概率为列出方程,求出x的值即可.【详解】设白球有x个,根据题意得:解得:x=1.故答案为1.【点睛】本题考查了概率的基本计算,根据题意列出方程就可以得出答案.用到的知识点为:概率=所求情况数与总情况数之比.12、1【分析】根据众数的定义直接解答即可.【详解】解:数据1、1、3、1、4中,∵数字1出现了两次,出现次数最多,∴1是众数,故答案为:1.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.13、.【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.故答案为【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.14、【分析】直接利用正弦的定义求解即可.【详解】解:如下图,在中,故答案为:.【点睛】本题考查的知识点是正弦的定义,熟记定义内容是解此题的关键.15、【解析】试题分析:根据已知数字等式得出变化规律,即可得出答案:∵,,,,…,∴。16、6【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△BEG∽△FAG,∵,∴,∴,∵,∴,,∴.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键.17、6或1【分析】因为直径所对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,列出关于BC的函数关系式,再根据二次函数的性质和三角形的三边关系得出的范围,再根据题意要求AB为整数,即可得出AB可能的长度.【详解】解:∵直径所对圆周角为直角,故ABC为直角三角形,∴根据勾股定理可得,,即,又∵AC+BC=8,∴AC=8-BC∴∵∴当BC=4时,的最小值=32,∴AB的最小值为∵∴∵AB=m∴∵m为整数∴m=6或1,故答案为:6或1.【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、二次函数的性质,解题的关键在于找出AB长度的范围.18、【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与两次摸到的球的颜色能配成紫色的情况,再利用概率公式即可求得答案.【详解】解:列表得:∵共有种等可能的结果,两次摸到的球的颜色能配成紫色的有种情况∴两次摸到的求的颜色能配成紫色的概率为:.故答案是:【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共66分)19、见解析【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小力胜、小明胜的情况,继而求得小力胜与小明胜的概率,比较概率大小,即可知这个游戏是否公平.【详解】列表得:两个数字之和转盘A转盘B-102110132-2-3-20-1-1-2-110∵由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之和为非负数有7个,负数有5个,,,对小明有利,这个游戏对双方不公平..【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20、(1),D(,);(2)P(,);(3)存在.N(,)或(,)或(,)或(,).【解析】试题分析:(1)利用待定系数法求出抛物线解析式;(2)确定出当△ACP的周长最小时,点P就是BC和对称轴的交点,利用两点间的距离公式计算即可;(3)作出辅助线,利用tan∠MDN=2或,建立关于点N的横坐标的方程,求出即可.试题解析:(1)由于抛物线(a≠0)经过A(-1,0),B(2,0)两点,因此把A、B两点的坐标代入(a≠0),可得:;解方程组可得:,故抛物线的解析式为:,∵=,所以D的坐标为(,).(2)如图1,设P(,k),∵,∴C(0,-1),∵A(-1,0),B(2,0),∴A、B两点关于对称轴对称,连接CB交对称轴于点P,则△ACP的周长最小.设直线BC为y=kx+b,则:,解得:,∴直线BC为:.当x=时,=,∴P(,);(3)存在.如图2,过点作NF⊥DM,∵B(2,0),C(0,﹣1),∴OB=2,OC=1,∴tan∠OBC=,tan∠OCB==2,设点N(m,),∴FN=|m﹣|,FD=||=||,∵Rt△DNM与Rt△BOC相似,∴∠MDN=∠OBC,或∠MDN=∠OCB;①当∠MDN=∠OBC时,∴tan∠MDN==,∴,∴m=(舍)或m=或m=,∴N(,)或(,);②当∠MDN=∠OCB时,∴tan∠MDN==2,∴,∴m=(舍)或m=或m=,∴N(,)或(,);∴符合条件的点N的坐标(,)或(,)或(,)或(,).考点:二次函数综合题;相似三角形的判定与性质;分类讨论;压轴题.21、(1)详见解析;(2)△ACF、、、【分析】(1)在中,,是的中点,可得,再通过,得证,再通过证明,得证,即可证明四边形BCEF是平行四边形;(2)根据题意,直接写出符合条件的所有等边三角形即可.【详解】(1)证明:∵在中,,是的中点∴,∵,∴,∵平分,∴,∵,∴,∵,∴,∴又∵,∴四边形BCEF是平行四边形;(2)∵四边形是菱形∴,∵∴∴△BCE和△BEF是等边三角形∴∴∵∴∴∴∴∴在△CDE和△CGE中∴∴∴是等边三角形∴∴∴∴∴∴△ACF是等边三角形∴等边三角形有△ACF,,,【点睛】本题考查了几何图形的综合问题,掌握直角三角形的斜边中线定理、平行的性质以及判定定理、平行四边形的性质以及判定、菱形的性质是解题的关键.22、(1)y=﹣50x+800(x>0);(2)单价为12元时,每天可获得的利润最大,最大利润是800元;(3)每千克10元或14元.【解析】本题是通过构建函数模型解答销售利润的问题.依据题意首先确定学生对话中一次函数关系;然后根据销售利润=销售量×(售价-进价),列出平均每天的销售利润w(元)与销售价x之间的函数关系,再依据函数的增减性求得最大利润.【详解】(1)当销售单价为13元/千克时,销售量为:750÷(13﹣8)=150千克,设:y与x的函数关系式为:y=kx+b(k≠0)把(10,300),(13,150)分别代入得:k=﹣50,b=800∴y与x的函数关系式为:y=﹣50x+800(x>0).(2)∵利润=销售量×(销售单价﹣进价),由题意得∴W=(﹣50x+800)(x﹣8)=﹣50(x﹣12)2+800,∴当销售单价为12元时,每天可获得的利润最大,最大利润是800元.(3)将w=600代入二次函数W=(﹣50x+800)(x﹣8)=600解得:x1=10,x2=14即:当销售利润为600元时,销售单价为每千克10元或14元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利用函数的增减性来解答,我们首先要读懂题意,确定变量,建立函数模型,然后结合实际选择最优方案.23、(1)详见解析;(2)1;(3)10【分析】(1)成绩一般的学生占的百分比=1﹣成绩优秀的百分比﹣成绩不合格的百分比,测试的学生总数=不合格的人数÷不合格人数的百分比,继而求出成绩优秀的人数,然后补全图形即可.(2)将成绩一般和优秀的人数相加即可;(3)该校学生文明礼仪知识测试中成绩达标的人数=1200×成绩达标的学生所占的百分比.【详解】(1)成绩一般的学生占的百分比=1﹣20%﹣50%=30%,测试的学生总数=24÷20%=120人,成绩优秀的人数=120×50%=60人,所补充图形如下所示:(2)该校被抽取的学生中达标的人数=36+60=1.(3)1200×(50%+30%)=10(人).答:估计全校达标的学生有10人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(2):A、B、D;(2)①2;②﹣22≤2x+2y≤2;(2)0≤m≤.【分析】(2)在直角坐标系描出A、B、C、D四点,观察图形即可得出结论(2)①分别画出直线y=2x+2、y=-x-2、y=-2得出图形为G,从而求出G的面积;②根据P(x,y)为G内(含边界)的一点,求出x、y的范围,从而2x+2y的取值范围;(2)分别画出直线y=2x+2、y=2x-2、y=-2x-2、y=-2x+2所围成的图形M,再根据抛物线的对称轴x=﹣m,和抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点,从而求出m的取值范围【详解】解:(2)如图所示:这四个点中是x﹣y﹣2≤0的解的点是A、B、/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论