2023届安徽省亳州市名校数学九年级上册期末教学质量检测模拟试题含解析_第1页
2023届安徽省亳州市名校数学九年级上册期末教学质量检测模拟试题含解析_第2页
2023届安徽省亳州市名校数学九年级上册期末教学质量检测模拟试题含解析_第3页
2023届安徽省亳州市名校数学九年级上册期末教学质量检测模拟试题含解析_第4页
2023届安徽省亳州市名校数学九年级上册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,△ABC是⊙O的内接三角形,∠AOB=110°,则∠ACB的度数为()A.35° B.55° C.60° D.70°2.抛物线y=ax2+bx+c(a≠1)如图所示,下列结论:①abc<1;②点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2;③b2>(a+c)2;④2a﹣b<1.正确的结论有()A.4个 B.3个 C.2个 D.1个3.已知,则的值是()A. B. C. D.4.已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠PAD=∠PDA=60º;②△PAO≌△ADE;③PO=r;④AO∶OP∶PA=1∶∶.A.①④ B.②③ C.③④ D.①③④5.运动会的领奖台可以近似的看成如图所示的立体图形,则它的左视图是()A. B.C. D.6.若点、、都在反比例函数的图象上,并且,则下列各式中正确的是()A. B. C. D.7.二次函数的图象如图所示,下列说法中错误的是(

)A.函数的对称轴是直线x=1B.当x<2时,y随x的增大而减小C.函数的开口方向向上D.函数图象与y轴的交点坐标是(0,-3)8.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.09.一元二次方程x²-4x-1=0配方可化为()A.(x+2)²=3 B.(x+2)²=5 C.(x-2)²=3 D.(x-2)²=510.已知关于x的不等式2x-m>-3的解集如图所示,则m的取值为()A.2 B.1 C.0 D.-1二、填空题(每小题3分,共24分)11.已知菱形ABCD的两条对角线相交于点O,若AB=6,∠BDC=30°,则菱形的面积为.12.已知y与x的函数满足下列条件:①它的图象经过(1,1)点;②当时,y随x的增大而减小.写出一个符合条件的函数:__________.13.如果在比例尺1:100000的滨海区地图上,招宝山风景区与郑氏十七房的距离约是19cm,则它们之间的实际距离约为_____千米.14.已知点P是线段AB的黄金分割点,AP>PB.若AB=1.则AP=__(结果保留根号).15.如图,利用标杆测量建筑物的高度,已知标杆高1.2,测得,则建筑物的高是__________.16.反比例函数的图象在一、三象限,则应满足_________________.17.若方程x2﹣2x﹣1=0的两根分别为x1,x2,则x1+x2﹣x1x2的值为_____.18.若如果x:y=3:1,那么x:(x-y)的值为_______.三、解答题(共66分)19.(10分)如图,在梯形中,,,是延长线上的点,连接,交于点.(1)求证:∽(2)如果,,,求的长.20.(6分)在平面直角坐标系中,抛物线与轴交于点,.(1)若,求的值;(2)过点作与轴平行的直线,交抛物线于点,.当时,求的取值范围.21.(6分)如图所示,四边形ABCD中,AD∥BC,∠A=90°,∠BCD<90°,AB=7,AD=2,BC=3,试在边AB上确定点P的位置,使得以P、C、D为顶点的三角形是直角三角形.22.(8分)如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.(1)当点F与点A重合时,点G恰好到达点D,此时x=,当EF⊥BC时,x=;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;(3)当S=15时,求此时x的值.23.(8分)如图,二次函数y=ax2+bx+c过点A(﹣1,0),B(3,0)和点C(4,5).(1)求该二次函数的表达式及最小值.(2)点P(m,n)是该二次函数图象上一点.①当m=﹣4时,求n的值;②已知点P到y轴的距离不大于4,请根据图象直接写出n的取值范围.24.(8分)如图,抛物线y=ax2+bx过A(4,0)B(1,3)两点,点C、B关于抛物线的对称轴对称,过点B作直线BH⊥x轴,交x轴于点H(1)求抛物线的解析式.(2)直接写出点C的坐标,并求出△ABC的面积.(3)点P是抛物线BA段上一动点,当△ABP的面积为3时,求出点P的坐标.25.(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)26.(10分)如图,是的角平分线,延长至点使得.求证:.

参考答案一、选择题(每小题3分,共30分)1、B【分析】直接根据圆周角定理进行解答即可.【详解】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=110°,∴∠ACB=∠AOB=55°.故选:B.【点睛】本题考查了三角形的外接圆与外心,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2、B【分析】利用抛物线开口方向得到a>1,利用抛物线的对称轴在y轴的左侧得到b>1,利用抛物线与y轴的交点在x轴下方得到c<1,则可对①进行判断;通过对称轴的位置,比较点(-3,y1)和点(1,y2)到对称轴的距离的大小可对②进行判断;由于(a+c)2-b2=(a+c-b)(a+c+b),而x=1时,a+b+c>1;x=-1时,a-b+c<1,则可对③进行判断;利用和不等式的性质可对④进行判断.【详解】∵抛物线开口向上,∴a>1,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>1,∵抛物线与y轴的交点在x轴下方,∴c<1,∴abc<1,所以①正确;∵抛物线的对称轴为直线x=﹣,而﹣1<﹣<1,∴点(﹣3,y1)到对称轴的距离比点(1,y2)到对称轴的距离大,∴y1>y2,所以②正确;∵x=1时,y>1,即a+b+c>1,x=﹣1时,y<1,即a﹣b+c<1,∴(a+c)2﹣b2=(a+c﹣b)(a+c+b)<1,∴b2>(a+c)2,所以③正确;∵﹣1<﹣<1,∴﹣2a<﹣b,∴2a﹣b>1,所以④错误.故选:B.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>1时,抛物线向上开口;当a<1时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(1,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>1时,抛物线与x轴有2个交点;△=b2-4ac=1时,抛物线与x轴有1个交点;△=b2-4ac<1时,抛物线与x轴没有交点.3、A【解析】设a=k,b=2k,则.故选A.4、C【解析】解:∵A、B、C、D、E、F是半径为r的⊙O的六等分点,∴,∴AE=DF<AD,根据题意得:AP=AE,DP=DF,∴AP=DP<AD,∴△PAD是等腰三角形,∠PAD=∠PDA≠60°,①错误;连接OP、AE、DE,如图所示,∵AD是⊙O的直径,∴AD>AE=AP,②△PAO≌△ADE错误,∠AED=90°,∠DAE=30°,∴DE=r,AE=DE=r,∴AP=AE=r,∵OA=OD,AP=DP,∴PO⊥AD,∴PO=r,③正确;∵AO:OP:PA=r:r:r=1::.∴④正确;说法正确的是③④,故选C.5、D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:由左视图的定义知该领奖台的左视图如下:故选D.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到的线用虚线表示.6、B【分析】根据反比例函数的图象特征即可得.【详解】反比例函数的图象特征:(1)当时,y的取值为正值;当时,y的取值为负值;(2)在每个象限内,y随x的增大而增大由特征(1)得:,则最大由特征(2)得:综上,故选:B.【点睛】本题考查了反比例函数的图象特征,掌握理解反比例函数的图象特征是解题关键.7、B【解析】利用二次函数的解析式与图象,判定开口方向,求得对称轴,与y轴的交点坐标,进一步利用二次函数的性质判定增减性即可.【详解】解:∵y=x2-2x-3=(x-1)2-4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,令x=0,得出y=-3,∴函数图象与y轴的交点坐标是(0,-3).因此错误的是B.故选:B.【点睛】本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键8、A【解析】根据一元二次方程一次项系数的定义即可得出答案.【详解】由一元二次方程一次项系数的定义可知一次项系数为﹣1,故选:A.【点睛】本题考查的是一元二次方程的基础知识,比较简单,需要熟练掌握.9、D【分析】移项,配方,即可得出选项.【详解】x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.【点睛】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.10、D【分析】本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.【详解】2x>m−3,解得x>,∵在数轴上的不等式的解集为:x>−2,∴=−2,解得m=−1;故选:D.【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据数轴上的解集进行判断,求得另一个字母的值.二、填空题(每小题3分,共24分)11、18【详解】∵ABCD是菱形,两条对角线相交于点O,AB=6∴CD=AB=6,AC⊥BD,且OA=OC,OB=OD在Rt△COD中,∵CD=6,∠BDC=30°∴∴∴12、y=-x+2(答案不唯一)【解析】①图象经过(1,1)点;②当x>1时.y随x的增大而减小,这个函数解析式为y=-x+2,故答案为y=-x+2(答案不唯一).13、1.【分析】根据比例尺=图上距离∶实际距离,列比例式即可求得它们之间的实际距离.要注意统一单位.【详解】解:设它们之间的实际距离为xcm,1∶100000=1∶x,解得x=100000.100000cm=1千米.所以它们之间的实际距离为1千米.故答案为1.【点睛】本题考查了比例线段.熟练运用比例尺进行计算,注意单位的转换.14、5﹣5【分析】根据黄金分割比的定义计算即可.【详解】根据黄金分割比,有故答案为:.【点睛】本题主要考查黄金分割比,掌握黄金分割比的定义是解题的关键.15、10.5【解析】先证△AEB∽△ABC,再利用相似的性质即可求出答案.【详解】解:由题可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案为10.5.【点睛】本题考查了相似的判定和性质.利用相似的性质列出含所求边的比例式是解题的关键.16、【分析】根据条件反比例函数的图象在一、三象限,可知k+2>0,即可求出k的取值.【详解】解:∵反比例函数的图象在一、三象限,∴>0,∴k+2>0,∴故答案为:【点睛】难题考察的是反比例函数的性质,图象在一三象限时k>0,图象在二四象限时k<0.17、1【解析】根据题意得x1+x2=2,x1x2=﹣1,所以x1+x2﹣x1x2=2﹣(﹣1)=1.故答案为1.18、【分析】根据x:y=3:1,则可设x=3a,y=a,即可计算x:(x-y)的值.【详解】解:设x=3a,y=a,则x:(x-y)=3a:(3a-a)=,故答案为:.【点睛】本题考查了比的性质,解题的关键是根据已有比例关系,设出x、y的值.三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)根据三角形相似的判定定理,即可得到结论;(2)由∽,得,进而即可求解.【详解】(1)∵,∴,,∴∽;(2)解:∵,,,,∴.由(1)知,∽,∴,即∴.【点睛】本题主要考查相似三角形的判定和性质定理,掌握相似三角形对应边成比例,是解题的关键.20、(1);(2)的取值范围为或.【分析】(1)先求出抛物线的对称轴,利用对称性求出A、B的坐标,然后把点代入抛物线,即可求出m的值;(2)根据根的判别式得到m的范围,再结合,然后分为:①开口向上,②开口向下,两种情况进行分析,即可得到答案.【详解】解:(1)抛物线对称轴为直线.∴点关于直线对称,∵抛物线与轴交于点,将代入中,得,∴;(2)抛物线与轴有两个交点∴,即,解得:或;①若,开口向上,如图,当时,有,解得:;∵或,∴;②若,开口向下,如图,当时,有,解得:,∵或,∴;综上所述,的取值范围为:或.【点睛】本题考查了二次函数的性质,二次函数与坐标轴的交点问题,根的判别式,解题的关键是掌握二次函数的性质,利用数形结合的思想和分类讨论的思想进行解题.21、在线段AB上且距离点A为1、6、处.【分析】分∠DPC=90°,∠PDC=90,∠PDC=90°三种情况讨论,在边AB上确定点P的位置,根据相似三角形的性质求得AP的长,使得以P、A、D为顶点的三角形是直角三角形.【详解】(1)如图,当∠DPC=90°时,∴∠DPA+∠BPC=90°,∵∠A=90°,∴∠DPA+∠PDA=90°,∴∠BPC=∠PDA,∵AD∥BC,∴∠B=180°-∠A=90°,∴∠A=∠B,∴△APD∽△BCP,∴,∵AB=7,BP=AB-AP,AD=2,BC=3,∴,∴AP2﹣7AP+6=0,∴AP=1或AP=6,(2)如图:当∠PDC=90°时,过D点作DE⊥BC于点E,∵AD//BC,∠A=∠B=∠BED=90°,∴四边形ABED是矩形,∴DE=AB=7,AD=BE=2,∵BC=3,∴EC=BC-BE=1,在Rt△DEC中,DC2=EC2+DE2=50,设AP=x,则PB=7﹣x,在Rt△PAD中PD2=AD2+AP2=4+x2,在Rt△PBC中PC2=BC2+PB2=32+(7﹣x)2,在Rt△PDC中PC2=PD2+DC2,即32+(7﹣x)2=50+4+x2,解方程得:.(3)当∠PDC=90°时,∵∠BCD<90°,∴点P在AB的延长线上,不合题意;∴点P的位置有三处,能使以P、A、D为顶点的三角形是直角三角形,分别在线段AB上且距离点A为1、6、处.【点睛】本题考查了相似三角形的判定与性质及勾股定理,如果两个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;解题时要认真审题,选择适宜的判定方法,熟练掌握相似三角形的判定定理并运用分类讨论的思想是解题关键.22、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;(2)分两种情况:①当点F在AB上时,作GH⊥BC于H,则四边形ABHG是矩形,证明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面积公式和三角形面积公式即可得出答案;②当点F在AD上时,作FM⊥BC于M,则FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面积公式和三角形面积公式即可得出答案;(3)当x2+9x+12=15时,当x2﹣21x+102=15时,分别解方程即可.【详解】(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;故答案为:6;10;(2)∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分两种情况:①当点F在AB上时,如图1所示:作GH⊥BC于H,则四边形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴,即,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面积为S=梯形ABEG的面积﹣△EFB的面积﹣△AGF的面积=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②当点F在AD上时,如图2所示:作FM⊥BC于M,则FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴,即,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面积为S=梯形CDFE的面积﹣△CEG的面积﹣△DFG的面积=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102即S=x2﹣21x+102(6<x≤10);(3)当x2+9x+12=15时,解得:x=﹣6±(负值舍去),∴x=﹣6+;当x2﹣21x+102=15时,解得:x=14±(不合题意舍去);∴当S=15时,此时x的值为﹣6+.【点睛】本题考查二次函数的动点问题,题目较难,解题时需注意分类讨论,避免漏解.23、(1)y=x2﹣2x﹣3,-4;(2)①1;②﹣4≤n≤1【分析】(1)根据题意,设出二次函数交点式,点C坐标代入求出a值,把二次函数化成顶点式即可得到最小值;(2)①m=-4,直接代入二次函数表达式,即可求出n的值;②由点P到y轴的距离不大于4,得出﹣4≤m≤4,结合二次函数图象可知,m=1时,n取最小值,m=-4时,n取最大值,代入二次函数的表达式计算即可.【详解】解:(1)根据题意,设二次函数表达式为,,点C代入,得,∴a=1,∴函数表达式为y=x2﹣2x﹣3,化为顶点式得:,∴x=1时,函数值最小y=-4,故答案为:;-4;(2)①当m=﹣4时,n=16+8﹣3=1,故答案为:1;②点P到y轴的距离为|m|,∴|m|≤4,∴﹣4≤m≤4,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,在﹣4≤m≤4时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=1,∴﹣4≤n≤1,故答案为:﹣4≤n≤1.【点睛】本题考查了待定系数法求二次函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键.24、(1)y=-x2+4x;(2)点C的坐标为(3,3),3;(3)点P的坐标为(2,4)或(3,3)【分析】(1)将点A、B的坐标代入即可求出解析式;(2)求出抛物线的对称轴,根据对称性得到点C的坐标,再利用面积公式即可得到三角形的面积;(3)先求出直线AB的解析式,过P点作PE∥y轴交AB于点E,设其坐标为P(a,-a2+4a),得到点E的坐标为(a,-a+4),求出线段PE,即可根据面积相加关系求出a,即可得到点P的坐标.【详解】(1)把点A(4,0),B(1,3)代入抛物线y=ax2+bx中,得,得,∴抛物线的解析式为y=-x/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论