




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A.8 B.9 C.10 D.112.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率3.为了得到函数的图象,可以将函数的图象()A.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度B.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度C.先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度D.先关于轴对称,再向右平移1个单位长度,最后再向下平移3个单位长度4.正方形具有而菱形不具有的性质是()A.对角线互相平分 B.对角线相等C.对角线平分一组对角 D.对角线互相垂直5.如图,点A,B,C都在⊙O上,若∠C=30°,则∠AOB的度数为()A.30° B.60° C.150° D.120°6.反比例函数y=的图象经过点(2,5),若点(1,n)在此反比例函数的图象上,则n等于()A.10 B.5 C.2 D.7.我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()A. B. C. D.8.如图,在△ABC中,点D、E分别在边BA、CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A. B. C. D.9.已知某函数的图象与函数的图象关于直线对称,则以下各点一定在图象上的是()A. B. C. D.10.如图,在△ABC中,AD=AC,延长CD至B,使BD=CD,DE⊥BC交AB于点E,EC交AD于点F.下列四个结论:①EB=EC;②BC=2AD;③△ABC∽△FCD;④若AC=6,则DF=1.其中正确的个数有()A.1 B.2 C.1 D.411.如图,已知□ABCD的对角线BD=4cm,将□ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4πcm B.3πcm C.2πcm D.πcm12.若点(x1,y1),(x2,y2)都是反比例函数图象上的点,并且y1<0<y2,则下列结论中正确的是()A.x1>x2 B.x1<x2 C.y随x的增大而减小 D.两点有可能在同一象限二、填空题(每题4分,共24分)13.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.14.如图,是正三角形,D、E分别是BC、AC上的点,当=_______时,~.15.已知关于x的函数满足下列条件:①当x>0时,函数值y随x值的增大而减小;②当x=1时,函数值y=1.请写一个符合条件函数的解析式:_____.(答案不唯一)16.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.17.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=度.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.三、解答题(共78分)19.(8分)如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E是BC边上的一个动点(不与B,C重合),EF⊥AB,EG⊥AC,垂足分别为F,G.(1)求证:;(2)FD与DG是否垂直?若垂直,请给出证明;若不垂直,请说明理由;(3)当的值为多少时,△FDG为等腰直角三角形?20.(8分)如图,⊙O的直径AB为10cm,弦BC为5cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.21.(8分)(1)计算:cos60°﹣tan30°+tan60°﹣2sin245°;(2)解方程:2(x﹣3)2=x(x﹣3).22.(10分)某校以“我最喜爱的体育运动”为主题对全校学生进行随机抽样调查,调查的运动项目有:篮球、羽毛球、乒乓球、跳绳及其它项目(每位同学仅选一项).根据调查结果绘制了如下不完整的频数分布表和扇形统计图:请根据以上图表信息解答下列问题:(1)频数分布表中的m=________,n=________;(2)在扇形统计图中,“乒乓球”所在的扇形的圆心角的度数为________°;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是________.23.(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)24.(10分)某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?25.(12分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.26.问题提出:如图所示,有三根针和套在一根针上的若干金属片,按下列规则,把金属片从一根针上全部移到另一根针上.a.每次只能移动1个金属片;b.较大的金属片不能放在较小的金属片上面.把个金属片从1号针移到3号针,最少移动多少次?问题探究:为了探究规律,我们采用一般问题特殊化的方法,先从简单的情形入手,再逐次递进,最后得出一般性结论.探究一:当时,只需把金属片从1号针移到3号针,用符号表示,共移动了1次.探究二:当时,为了避免将较大的金属片放在较小的金属片上面,我们利用2号针作为“中间针”,移动的顺序是:a.把第1个金属片从1号针移到2号针;b.把第2个金属片从1号针移到3号针;c.把第1个金属片从2号针移到3号针.用符号表示为:,,.共移动了3次.探究三:当时,把上面两个金属片作为一个整体,则归结为的情形,移动的顺序是:a.把上面两个金属片从1号针移到2号针;b.把第3个金属片从1号针移到3号针;c.把上面两个金属片从2号针移到3号针.其中(1)和(3)都需要借助中间针,用符号表示为:,,,,,,.共移动了7次.(1)探究四:请仿照前面步骤进行解答:当时,把上面3个金属片作为一个整体,移动的顺序是:___________________________________________________.(2)探究五:根据上面的规律你可以发现当时,需要移动________次.(3)探究六:把个金属片从1号针移到3号针,最少移动________次.(4)探究七:如果我们把个金属片从1号针移到3号针,最少移动的次数记为,当时如果我们把个金属片从1号针移到3号针,最少移动的次数记为,那么与的关系是__________.
参考答案一、选择题(每题4分,共48分)1、D【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.2、D【详解】因为大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,所以D选项说法正确,故选D.3、A【分析】先求出两个二次函数的顶点坐标,然后根据顶点坐标即可判断对称或平移的方式.【详解】的顶点坐标为的顶点坐标为∴点先关于轴对称,再向右平移1个单位长度,最后再向上平移3个单位长度可得到点故选A【点睛】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.4、B【分析】根据正方形和菱形的性质逐项分析可得解.【详解】根据正方形对角线的性质:平分、相等、垂直;菱形对角线的性质:平分、垂直,故选B.【点睛】考点:1.菱形的性质;2.正方形的性质.5、B【分析】根据圆周角定理结合∠C=30°,即可得出∠AOB的度数.【详解】∵∠C=30°,∴∠AOB=2∠C=60°.故选:B.【点睛】本题考查了圆周角定理,解题的关键是利用同弧所对的圆心角是圆周角的2倍解决题.本题属于基础题,难度不大,解决该题型题目时,熟练运用圆周角定理解决问题是关键.6、A【解析】解:因为反比例函数y=的图象经过点(2,5),所以k=所以反比例函数的解析式为y=,将点(1,n)代入可得:n=10.故选:A7、A【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解.【详解】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)
共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,
所以两人恰好选择同一场馆的概率,故选:A.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.8、D【分析】只要证明,即可解决问题.【详解】解:A.,可得AE:AC=1:1,与已知不成比例,故不能判定B.,可得AC:AE=1:1,与已知不成比例,故不能判定;C选项与已知的,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;D.,可得DE//BC,故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9、A【分析】分别求出各选项点关于直线对称点的坐标,代入函数验证是否在其图象上,从而得出答案.【详解】解:A.点关于对称的点为点,而在函数上,点在图象上;B.点关于对称的点为点,而不在函数上,点不在图象上;同理可C、D不在图象上.故选:.【点睛】本题考查反比例函数图象及性质;熟练掌握函数关于直线的对称时,对应点关于直线对称是解题的关键.10、C【分析】根据垂直平分线的性质可证①;②是错误的;推导出2组角相等可证△ABC∽△FCD,从而判断③;根据△ABC∽△FCD可推导出④.【详解】∵BD=CD,DE⊥BC∴ED是BC的垂直平分线∴EB=EC,△EBC是等腰三角形,①正确∴∠B=∠FCD∵AD=AC∴∠ACB=∠FDC∴△ABC∽△FCD,③正确∴∵AC=6,∴DF=1,④正确②是错误的故选:C【点睛】本题考查等腰三角形的性质和相似的证明求解,解题关键是推导出三角形EBC是等腰三角形.11、C【分析】点D所转过的路径长是一段弧,是一段圆心角为180°,半径为OD的弧,故根据弧长公式计算即可.【详解】解:BD=4,
∴OD=2
∴点D所转过的路径长==2π.
故选:C.【点睛】本题主要考查了弧长公式:.12、B【解析】根据函数的解析式得出反比例函数y的图象在第二、四象限,求出点(x1,y1)在第四象限的图象上,点(x1,y1)在第二象限的图象上,再逐个判断即可.【详解】反比例函数y的图象在第二、四象限.∵y1<0<y1,∴点(x1,y1)在第四象限的图象上,点(x1,y1)在第二象限的图象上,∴x1>0>x1.A.x1>x1,故本选项正确;B.x1<x1,故本选项错误;C.在每一个象限内,y随x的增大而增大,故本选项错误;D.点(x1,y1)在第四象限的图象上,点(x1,y1)在第二象限的图象上,故本选项错误.故选A.【点睛】本题考查了反比例函数的图象和性质的应用,能熟记反比例函数的性质是解答此题的关键.二、填空题(每题4分,共24分)13、3【解析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.14、60°【分析】由△ABC是正三角形可得∠B=60°,又由△ABD∽△DCE,根据相似三角形的对应角相等,即可得∠EDC=∠BAD,然后利用三角形外角的性质,即可求得∠ADE的度数【详解】∵△ABC是正三角形,∴∠B=60°,∵△ABD∽△DCE,∴∠EDC=∠BAD,∵∠ADC是△ABD的外角,∴∠ADE+∠EDC=∠B+∠BAD,∴∠ADE=∠B=60°,【点睛】此题考查了相似三角形的判定与性质、等边三角形的性质以及三角形外角的性质.此题难度适中.15、y=(答案不唯一).【分析】根据反比例函数的性质解答.【详解】解:根据反比例函数的性质关于x的函数当x>0时,函数值y随x值的增大而减小,则函数关系式为y=(k>0),把当x=1时,函数值y=1,代入上式得k=1,符合条件函数的解析式为y=(答案不唯一).【点睛】此题主要考察反比例函数的性质,判断k与零的大小是关键.16、y=2(x+3)2+1【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17、1.【分析】根据圆周角定理进行分析可得到答案.【详解】解:∵∠BAC=∠BOC,∠ACB=∠AOB,∵∠BOC=2∠AOB,∴∠ACB=∠BAC=1°.故答案为1.考点:圆周角定理.18、1【解析】抛物线的解析式为y=x2-6x-16,可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=1.【详解】抛物线的解析式为y=x2-6x-16,
则D(0,-16)
令y=0,解得:x=-2或8,
函数的对称轴x=-=3,即M(3,0),
则A(-2,0)、B(8,0),则AB=10,
圆的半径为AB=5,
在Rt△COM中,
OM=5,OM=3,则:CO=4,
则:CD=CO+OD=4+16=1.故答案是:1.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.三、解答题(共78分)19、(1)见解析;(2)FD与DG垂直,理由见解析;(3)当时,△FDG为等腰直角三角形,理由见解析.【分析】(1)由比例线段可知,我们需要证明△ADC∽△EGC,由两个角对应相等即可证得;(2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论;(3)先判断出DF=DG,再利用同角的余角相等判断出∠ADF=∠CDG,∠BAD=∠C,得出△ADF≌△CDG,即可得出结论.【详解】(1)证明:在△ADC和△EGC中,∵∠ADC=∠EGC,∠C=∠C,∴△ADC∽△EGC.∴.(2)解:FD与DG垂直.理由如下:在四边形AFEG中,∵∠FAG=∠AFE=∠AGE=90°,∴四边形AFEG为矩形.∴AF=EG.∵,∴.又∵△ABC为直角三角形,AD⊥BC,∴∠FAD=∠C=90°﹣∠DAC,∴△AFD∽△CGD.∴∠ADF=∠CDG.∵∠CDG+∠ADG=90°,∴∠ADF+∠ADG=90°.即∠FDG=90°.∴FD⊥DG.(3)解:当的值为1时,△FDG为等腰直角三角形,理由如下:由(2)知,∠FDG=90°,∵△DFG为等腰直角三角形,∴DF=DG,∵AD是BC边上的高,∴∠ADC=90°,∴∠ADG+∠CDG=90°,∵∠FDG=90°,∴∠ADG+∠ADF=90°,∴∠ADF=∠CDG,∵∠CAD+∠BAD=90°,∠C+∠CAD=90°,∴∠BAD=∠C,∴△ADF≌△CDG(AAS),∴AD=CD,∵∠ADC=90°,∴∠C=45°=∠B,∴AB=AC,即:当的值为1时,△FDG为等腰直角三角形.【点睛】此题是相似形综合题,主要考查了相似三角形的判定和性质,全等三角形的判定和性质,等腰直角三角形的性质,同角的余角相等,判断出△ADF≌△CDG是解本题的关键.20、(1)AC=5,AD=5;(2)直线PC与⊙O相切【分析】(1)、连接BD,根据AB为直径,则∠ACB=∠ADB=90°,根据Rt△ABC的勾股定理求出AC的长度,根据CD平分∠ACB得出Rt△ABD是等腰直角三角形,从而得出AD的长度;(2)、连接OC,根据OA=OC得出∠CAO=∠OCA,根据PC=PE得出∠PCE=∠PEC,然后结合CD平分∠ACB得出∠ACE=∠ECB,从而得出∠PCB=∠ACO,根据∠ACB=90°得出∠OCP=90°,从而说明切线.【详解】解:(1)、①如图,连接BD,∵AB是直径∴∠ACB=∠ADB=90°,在RT△ABC中,AC=②∵CD平分∠ACB,∴AD=BD,∴Rt△ABD是直角等腰三角形∴AD=AB=×10=5cm;(2)、直线PC与⊙O相切,理由:连接OC,∵OC=OA∴∠CAO=∠OCA∵PC=PE∴∠PCE=∠PEC,∵∠PEC=∠CAE+∠ACE∵CD平分∠ACB∴∠ACE=∠ECB∴∠PCB=∠ACO∵∠ACB=90°,∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,OC⊥PC,∴直线PC与⊙O相切.考点:(1)、勾股定理;(2)、直线与圆的位置关系.21、(1);(2)x1=3,x2=1.【分析】(1)把特殊角的三角函数值代入,然后进行计算即可;(2)移项后用分解因式法求解.【详解】解:(1)原式=;(2)移项,得:2(x﹣3)2﹣x(x﹣3)=0,即(x﹣3)(2x﹣1﹣x)=0,∴x﹣3=0或x﹣1=0,解得:x1=3,x2=1.【点睛】本题考查了特殊角的三角函数值的有关运算和一元二次方程的解法,属于基础题型,熟练掌握基本知识是解题的关键.22、20.3108【分析】(1)先求出样本总数,进而可得出m、n的值;(2)根据(1)中n的值可得出,“乒乓球”所在的扇形的圆心角的度数;(3)依据求简单事件的概率即可求出.【详解】解:(1)∵喜欢篮球的是60人,频率是0.25,∴样本数=60÷0.25=1.∵喜欢羽毛球场的频率是0.20,喜欢乒乓球的是72人,∴n=72÷1=0.30,m=0.20×1=2.故答案为2,0.30;(2)∵n=0.30,∴0.30×360°=108°.故答案为108;(3)从选择“篮球”选项的60名学生中,随机抽取10名学生作为代表进行投篮测试,则其中某位学生被选中的概率是10÷60=.故答案为(1)2,0.3(2)108(3).(3)【点睛】题考查的是扇形统计图,熟知通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数是解答此题的关键.23、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【分析】(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.【详解】解:(1)过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,BC=80千米,∴CD=BC•sin30°=80×(千米),AC=(千米),AC+BC=80+40≈40×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)∵cos30°=,BC=80(千米),∴BD=BC•cos30°=80×(千米),∵tan45°=,CD=40(千米),∴AD=(千米),∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).答:汽车从A地到B地比原来少走的路程为27.2千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.24、(4)60;(4)作图见试题解析;(4)4.【解析】试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.试题解析:(4)被调查的学生人数为:44÷40%=60(人);(4)喜欢艺体类的学生数为:60-44-44-46=8(人),如图所示:全校最喜爱文学类图书的学生约有:4400×=4(人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产开发项目施工安全管理协议
- 农村电商销售合作与品牌推广协议方案书
- (2025年标准)雨色协议书
- 2025年保险劳动纠纷协议书
- 2025年学术顾问聘请协议书
- 2025年课件版权授权协议书
- (2025年标准)烟叶育苗协议书
- 《风险投资合伙协议》
- 平低植被养护协议
- 2026届厦门市第六中学高三化学第一学期期中质量跟踪监视模拟试题含解析
- 蒙台梭利教学法PPT完整全套教学课件
- 4月份公路养护工作计划
- 保安员在岗培训法律-2
- 初中英语中考专题训练阅读理解-应用文篇
- YC/T 210.2-2006烟叶代码第2部分:烟叶形态代码
- GB/T 20671.1-2006非金属垫片材料分类体系及试验方法第1部分:非金属垫片材料分类体系
- 熵权法教学讲解课件
- 医师病理知识定期考核试题与答案
- 课堂因“融错·容错·溶措”而精彩
- 安宁疗护服务流程
- 热分析DSC培训new
评论
0/150
提交评论