




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈 B.四丈五尺 C.一丈 D.五尺2.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为()A. B. C. D.3.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有()A.最小值―3B.最小值3C.最大值―3D.最大值34.如图1所示的是山西大同北都桥的照片,桥上面的部分是以抛物线为模型设计而成的,从正面观察该桥的上面部分是一条抛物线,如图2,若,以所在直线为轴,抛物线的顶点在轴上建立平面直角坐标系,则此桥上半部分所在抛物线的解析式为()A. B.C. D.5.为了美化校园环境,加大校园绿化投资.某区前年用于绿化的投资为18万元,今年用于绿化的投资为33万元,设这两年用于绿化投资的年平均增长率为x,则()A.18(1+2x)=33 B.18(1+x2)=33C.18(1+x)2=33 D.18(1+x)+18(1+x)2=336.﹣3的绝对值是()A.﹣3 B.3 C.- D.7.下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.投一枚图钉,“钉尖朝上”的概率不能用列举法求得8.如图,点A、B、C在⊙O上,∠A=50°,则∠BOC的度数为()A.130° B.50° C.65° D.100°9.如图,D、E分别是AB、AC上两点,CD与BE相交于点O,下列条件中不能使△ABE和△ACD相似的是()A.∠B=∠C B.∠ADC=∠AEB C.BE=CD,AB=AC D.AD:AC=AE:AB10.有n支球队参加篮球比赛,共比赛了15场,每两个队之间只比赛一场,则下列方程中符合题意的是()A.n(n﹣1)=15 B.n(n+1)=15C.n(n﹣1)=30 D.n(n+1)=3011.如图,AB是⊙O的直径,∠AOC=130°,则∠D等于()A.25° B.35° C.50° D.65°12.如图,在平面直角坐标系中,Rt△ABO中,∠ABO=90°,OB边在x轴上,将△ABO绕点B顺时针旋转60°得到△CBD.若点A的坐标为(-2,2),则点C的坐标为()A.(,1) B.(1,) C.(1,2) D.(2,1)二、填空题(每题4分,共24分)13.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是__________.14.若一个反比例函数的图像经过点和,则这个反比例函数的表达式为__________.15.如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为_____m.16.如图,在圆中,是弦,点是劣弧的中点,联结,平分,联结、,那么__________度.17.反比例函数的图象在一、三象限,则应满足_________________.18.已知,其相似比为2:3,则他们面积的比为__________.三、解答题(共78分)19.(8分)甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.20.(8分)自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线表示.(1)________;(2)求图1表示的售价与时间的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?21.(8分)已知一次函数的图象与二次函数的图象相交于和,点是线段上的动点(不与重合),过点作轴,与二次函数的图象交于点.(1)求的值;(2)求线段长的最大值;(3)当为的等腰直角三角形时,求出此时点的坐标.22.(10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?23.(10分)已知△ABC在平面直角坐标系中的位置如图所示.(1)分别写出图中点A和点C的坐标;(2)画出△ABC绕点C按顺时针方向旋转90°后的△A′B′C′;(3)求点A旋转到点A′所经过的路线长(结果保留π).24.(10分)某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?25.(12分)如图,直线l的解析式为y=x,反比例函数y=(x>0)的图象与l交于点N,且点N的横坐标为1.(1)求k的值;(2)点A、点B分别是直线l、x轴上的两点,且OA=OB=10,线段AB与反比例函数图象交于点M,连接OM,求△BOM的面积.26.如图,AB是⊙O的直径,弧ED=弧BD,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OACD,求阴影部分的面积;(2)求证:DEDM.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物高与影长成正比是解答此题的关键.2、A【分析】根据题意,左视图有两列,左视图所看到的每列小正方形数目分别为3,1.【详解】因为左视图有两列,左视图所看到的每列小正方形数目分别为3,1故选:A.【点睛】本题考查由三视图判断几何体,简单组合体的三视图,解题关键是根据俯视图确定左视图的列数和各列最高处的正方形个数.3、A【解析】把点(-1,-3)代入y=x2+mx+n得n=-4+m,再代入mn+1进行配方即可.【详解】∵二次函数y=x2+mx+n的图像经过点(-1,-3),∴-3=1-m+n,∴n=-4+m,代入mn+1,得mn+1=m2-4m+1=(m-2)2-3.∴代数式mn+1有最小值-3.故选A.【点睛】本题考查了二次函数图象上点的坐标特征,以及二次函数的性质,把函数mn+1的解析式化成顶点式是解题的关键.4、A【分析】首先设抛物线的解析式y=ax2+bx+c,由题意可以知道A(-30,0)B(30,0)C(0,15)代入即可得到解析式.【详解】解:设此桥上半部分所在抛物线的解析式为y=ax2+bx+c∵AB=60OC=15∴A(-30,0)B(30,0)C(0,15)将A、B、C代入y=ax2+bx+c中得到y=-x2+15故选A【点睛】此题主要考查了二次函数的实际应用问题,主要培养学生用数学知识解决实际问题的能力.5、C【解析】根据题意可以列出相应的一元二次方程,本题得以解决.【详解】由题意可得,18(1+x)2=33,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的一元二次方程,这是一道典型的增长率问题.6、B【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.7、C【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确,故选:C.【点睛】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.8、D【解析】根据圆周角定理求解即可.【详解】解:∵∠A=50°,∴∠BOC=2∠A=100°.故选D.【点睛】考查了圆周角定理的运用.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9、C【解析】试题分析:∵∠A=∠A,∴当∠B=∠C或∠ADC=∠AEB或AD:AC=AE:AB时,△ABE和△ACD相似.故选C.考点:相似三角形的判定.10、C【解析】由于每两个队之间只比赛一场,则此次比赛的总场数为:场.根据题意可知:此次比赛的总场数=15场,依此等量关系列出方程即可.【详解】试题解析:∵有支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为∴共比赛了15场,即故选C.11、A【解析】试题分析:∵AB是⊙O的直径,∴∠BOC=180°-∠AOC=180°-130°=50°,∴∠D=∠BOC=×50°=25°.故选A.考点:圆周角定理12、B【解析】作CH⊥x轴于H,如图,∵点A的坐标为(−2,),AB⊥x轴于点B,∴tan∠BAC=,∴∠A=,∵△ABO绕点B逆时针旋转60∘得到△CBD,∴BC=BA=,OB=2,∠CBH=,在Rt△CBH中,,,OH=BH−OB=3−2=1,∴故选:B.【点睛】根据直线解析式求出点A的坐标,然后求出AB、OB,再利用勾股定理列式求出OA,然后判断出∠C=30°,CD∥x轴,再根据直角三角形30°角所对的直角边等于斜边的一半求出BE,利用勾股定理列式求出CE,然后求出点C的横坐标,再写出点C的坐标即可.二、填空题(每题4分,共24分)13、【分析】根据题意可知密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,直接利用概率公式求解即可.【详解】解:∵密码的末位数字一共有10种等可能的结果,小丽能一次支付成功的只有1种情况,∴小丽能一次支付成功的概率是.故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14、【分析】这个反比例函数的表达式为,将A、B两点坐标代入,列出方程即可求出k的值,从而求出反比例函数的表达式.【详解】解:设这个反比例函数的表达式为将点和代入,得化简,得解得:(反比例函数与坐标轴无交点,故舍去)解得:∴这个反比例函数的表达式为故答案为:.【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.15、20m【详解】∵CD∥AB,∴△ABE∽△DCE,∴,∵AD=15m,ED=3m,∴AE=AD-ED=12m,又∵CD=5m,∴,∴3AB=60,∴AB=20m.故答案为20m.16、120【分析】连接AC,证明△AOC是等边三角形,得出的度数.【详解】连接AC∵点C是的中点∴∵,∴AB平分OC∴AB是线段OC的垂直平分线∴∵∴∴△AOC是等边三角形∴∴∴故答案为.【点睛】本题考查了等边三角形的判定定理,从而得出目标角的度数.17、【分析】根据条件反比例函数的图象在一、三象限,可知k+2>0,即可求出k的取值.【详解】解:∵反比例函数的图象在一、三象限,∴>0,∴k+2>0,∴故答案为:【点睛】难题考察的是反比例函数的性质,图象在一三象限时k>0,图象在二四象限时k<0.18、4:1.【分析】根据相似三角形面积的比等于相似比的平方,从而可得答案.【详解】解:∵两个相似三角形的相似比为,∴这两个相似三角形的面积比为,故答案为:.【点睛】本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.三、解答题(共78分)19、米.【分析】先求抛物线对称轴,再根据待定系数法求抛物线解析式,再求函数最大值.【详解】由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:,解得:,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飞行的最高高度为:米.【点睛】本题考核知识点:二次函数的应用.解题关键点:熟记二次函数的基本性质.20、(1);(2);(3)当20天或40天,最小利润为10元千克【分析】(1)把代入可得结论;(2)当时,设,把,代入;当时,设,把,代入,分别求解即可;(3)设利润为,分两种情形:当时、当时,利用二次函数的性质分别求解即可.【详解】解:(1)把代入,得到,故答案为:.(2)当时,设,把,代入得到,解得,.当时,设,把,代入得到,解得,.综上所述,.(3)设利润为.当时,,当时,有最小值,最小值为10(元千克).当时,,当时,最小利润(元千克),综上所述,当20天或40天,最小利润为10元千克.【点睛】本题考查二次函数的应用、一次函数的性质、待定系数法等知识,解题的关键从函数图象中获取信息,利用待定系数法求得解析式.21、(1)1,3;(2)最大值为;(3)【分析】(1)将点分别代入一次函数解析式可求得b的值,再将点A的坐标代入二次函数可求出a的值;
(2)设,则,根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PC的长关于m的二次函数,根据二次函数的性质可得答案;
(3)同(2)设出点P,C的坐标,根据题意可用含m的式子表示出AC,PC的长,根据AC=PC可得关于m的方程,求得m的值,进而求出点P的坐标.【详解】解:(1)∵在直线上,∴,∴.又∵在拋物线上,∴,解得.(2)设,则,∴,∴当时,有最大值,最大值为.(3)如图,∵为的等腰三角形且轴,∴连接,轴,∵,∴,.∵,∴,化简,得,解得,(不合题意,舍去).当时,,∴此时点的坐标为.【点睛】本题是二次函数综合题,主要考查了求待定系数法求函数解析式,二次函数的最值以及等腰三角形的性质等知识,利用平行于y轴的直线上两点间的距离建立出二次函数模型求出最值是解题关键.22、(1);(2)当销售单价定为74元或72元时,每周销售利润最大,最大利润是5280元;【分析】(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y个与降价x元之间的函数关系式;
(2)根据题意结合每周获得的利润W=销量×每个的利润,进而利用二次函数增减性求出答案;【详解】解:(1)依题意有:;
(2)依题意有:
W=(80-50-x)(10x+160)===-10(x-7)2+5290,
因为x为偶数,
所以当销售单价定为80-6=74元或80-8=72时,每周销售利润最大,最大利润是5280元;【点睛】此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.23、(1)、(2)见解析(3)【解析】试题分析:(1)根据点的平面直角坐标系中点的位置写出点的坐标;(2)根据旋转图形的性质画出旋转后的图形;(3)点A所经过的路程是以点C为圆心,AC长为半径的扇形的弧长.试题解析:(1)A(0,4)C(3,1)(2)如图所示:(3)根据勾股定理可得:AC=3,则.考点:图形的旋转、扇形的弧长计算公式.24、(1)20%(2)能【解析】(1)设第一季度平均每月的增长率为x,根据该厂一月份及三月份的总产量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据五月份的总产量=三月份的总产量×(1+增长率)2,即可求出今年五月份的总产量,再与1000进行比较即可得出结论.【详解】(1)设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增长率为20%.(2)720×(1+20%)2=1036.8(t).∵1036.8>1000,∴该厂今年5月份总产量能突破1000t.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,求出今年五月份的总产量.25、(1)27;(2)2【分析】/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《汉语阅读教程》课件-23汉语阅读教程2上课件L4
- 2025劳动合同风险揭秘:求职者必看
- 煤炭生产经营单位(安全生产管理人员)考试题及答案
- 2025科技创新型中小企业贷款贴息项目合同(官方范本)
- 《2025地板供货合同》
- 2025金融合同资产配置委托代理合同
- 小儿多源性房性心动过速的临床护理
- 2025企业借款合同及借条
- (三模)内江市2025届高三第三次模拟考物理试题(含答案)
- 《企业税收优惠》课件
- 一带一路论文参考文献(70个范例参考),参考文献
- 脚手架详细计算书
- 先导化合物的优化课件
- 中学生心理危机识别与预防- 班主任技能培训课件
- 征信查询委托书(共4篇)
- 销售谈判技巧课件
- PADI开放水域潜水员理论考试A卷
- golf高尔夫介绍课件
- 物业管理服务品质检查表
- 六年级下册第五单元16表里的生物-表里的生物-学习任务单
- JJF 1318-2011 影像测量仪校准规范-(高清现行)
评论
0/150
提交评论