




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,线段AB是⊙O的直径,弦,,则等于().A. B. C. D.2.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120° D.180°3.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30° B.45°C.90° D.135°4.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.5.27的立方根是()A.±3 B.±3 C.3 D.36.反比例函数图象的一支如图所示,的面积为2,则该函数的解析式是()A. B. C. D.7.图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是()A. B. C. D.8.若反比例函数y=的图象经过点(2,3),则它的图象也一定经过的点是()A. B. C. D.9.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°,得到△A1B1C1,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1) D.(1,﹣2)10.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A. B. C. D.11.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.912.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A.3cm B.5cm C.6cm D.8cm二、填空题(每题4分,共24分)13.如图,D在矩形ABCD中,AB=4,BC=6,E是边AD一个动点,将△ABE沿BE对折成△BEF,则线段DF长的最小值为_____.14.在Rt△ABC中,∠C=90°,如果AC=9,cosA=,那么AB=________.15.如图所示,在中,,将绕点旋转,当点与点重合时,点落在点处,如果,,那么的中点和的中点的距离是______.16.已知两个二次函数的图像如图所示,那么a1________a2(填“>”、“=”或“<”).17.有一块三角板,为直角,,将它放置在中,如图,点、在圆上,边经过圆心,劣弧的度数等于_______18.已知tan(α+15°)=,则锐角α的度数为______°.三、解答题(共78分)19.(8分)如图1是一种折叠台灯,将其放置在水平桌面上,图2是其简化示意图,测得其灯臂长为灯翠长为,底座厚度为根据使用习惯,灯臂的倾斜角固定为,(1)当转动到与桌面平行时,求点到桌面的距离;(2)在使用过程中发现,当转到至时,光线效果最好,求此时灯罩顶端到桌面的高度(参考数据:,结果精确到个位).20.(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.21.(8分)解方程:(l)(2)(配方法).22.(10分)如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(n,3(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣6x>0时x(3)若M是x轴上一点,且△MOB和△AOB的面积相等,求M点坐标.23.(10分)如图,点是反比例函数图象上的一点,过点作轴于点,连接,的面积为1.点的坐标为.若一次函数的图象经过点,交双曲线的另一支于点,交轴点.(1)求反比例函数和一次函数的解析式;(1)若为轴上的一个动点,且的面积为5,请求出点的坐标.24.(10分)乐至县城有两座远近闻名的南北古塔,清朝道光11年至13年(公元1831--1833年)修建,南塔名为“文运塔”,高30米;北塔名为“凌云塔”.为了测量北塔的高度AB,身高为1.65米的小明在C处用测角仪CD,(如图所示)测得塔顶A的仰角为45°,此时小明在太阳光线下的影长为1.1米,测角仪的影长为1米.随后,他再向北塔方向前进14米到达H处,又测得北塔的顶端A的仰角为60°,求北塔AB的高度.(参考数据≈1.414,≈1.732,结果保留整数)25.(12分)为弘扬中华民族传统文化,某市举办了中小学生“国学经典大赛”,比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式为“双人组”.小明和小红组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次.则恰好小明抽中“唐诗”且小红抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.26.如图,已知抛物线与轴交于、两点,,交轴于点,对称轴是直线.(1)求抛物线的解析式及点的坐标;(2)连接,是线段上一点,关于直线的对称点正好落在上,求点的坐标;(3)动点从点出发,以每秒2个单位长度的速度向点运动,过作轴的垂线交抛物线于点,交线段于点.设运动时间为()秒.若与相似,请求出的值.
参考答案一、选择题(每题4分,共48分)1、C【分析】先根据垂径定理得到,再根据圆周角定理得∠BOD=2∠CAB=40°,然后利用邻补角的定义计算∠AOD的度数.【详解】∵CD⊥AB,∴,∴∠BOD=2∠CAB=2×20°=40°,∴∠AOD=180°-∠BOD=180°-40°=140°.故答案为C.【点睛】本题考查圆中的角度计算,熟练掌握垂径定理和圆周角定理是关键.2、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C.考点:有关扇形和圆锥的相关计算3、C【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【点睛】考点:勾股定理逆定理.4、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,,,,且,,故选:.【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.5、C【分析】由题意根据如果一个数x的立方等于a,那么x是a的立方根,据此定义进行分析求解即可.【详解】解:∵1的立方等于27,∴27的立方根等于1.故选:C.【点睛】本题主要考查求一个数的立方根,解题时先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.6、D【分析】根据反比例函数系数k的几何意义,由△POM的面积为2,可知|k|=2,再结合图象所在的象限,确定k的值,则函数的解析式即可求出.【详解】解:△POM的面积为2,S=|k|=2,,又图象在第四象限,k<0,k=-4,反比例函数的解析式为:.故选D.【点睛】本题考查了反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.7、D【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【详解】从上面看,图2的俯视图是正方形,有一条对角线.
故选:D.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.8、A【详解】解:根据题意得k=2×3=6,所以反比例函数解析式为y=,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y=的图象上.故选A.【点睛】本题考查反比例函数图象上点的坐标特征.9、C【解析】先根据旋转的性质得到点A的对应点为点,点B的对应点为点,点C的对应点为点,再根据旋转的性质得到旋转中心在线段的垂直平分线上,也在线段的垂直平分线上,即两垂直平分线的交点为旋转中心,而易得线段的垂直平分线为直线x=1,线段的垂直平分线为以为对角线的正方形的另一条对角线所在的直线上.【详解】∵将△ABC以某点为旋转中心,顺时针旋转90°得到△,
∴点A的对应点为点,点B的对应点为点,点C的对应点为点
作线段和的垂直平分线,它们的交点为P(1,-1),
∴旋转中心的坐标为(1,-1).
故选C.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.10、D【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到,借助相似三角形的性质即可解决问题.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴,∴S△DOE:S△AOC=,故选:D.【点睛】此题考查相似三角形的判定及性质,根据BE:EC=1:3得到同高两个三角形的底的关系是解题的关键,再利用相似三角形即可解答.11、A【分析】先利用勾股定理判断△ABC为直角三角形,且∠BAC=90°,继而证明四边形AEOF为正方形,设⊙O的半径为r,利用面积法求出r的值即可求得答案.【详解】∵AB=5,BC=13,CA=12,∴AB2+AC2=BC2,∴△ABC为直角三角形,且∠BAC=90°,∵⊙O为△ABC内切圆,∴∠AFO=∠AEO=90°,且AE=AF,∴四边形AEOF为正方形,设⊙O的半径为r,∴OE=OF=r,∴S四边形AEOF=r²,连接AO,BO,CO,∴S△ABC=S△AOB+S△AOC+S△BOC,∴,∴r=2,∴S四边形AEOF=r²=4,故选A.【点睛】本题考查了三角形的内切圆,勾股定理的逆定理,正方形判定与性质,面积法等,正确把握相关知识是解题的关键.12、B【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.二、填空题(每题4分,共24分)13、【分析】连接DF、BD,根据DF>BD−BF可知当点F落在BD上时,DF取得最小值,且最小值为BD−BF的长,然后根据矩形的折叠性质进一步求解即可.【详解】如图,连接DF、BD,由图可知,DF>BD−BF,当点F落在BD上时,DF取得最小值,且最小值为BD−BF的长,∵四边形ABCD是矩形,∴AB=CD=4、BC=6,∴BD=,由折叠性质知AB=BF=4,∴线段DF长度的最小值为BD−BF=,故答案为:.【点睛】本题主要考查了矩形的折叠的性质,熟练掌握相关概念是解题关键.14、27【解析】试题解析:解得:故答案为15、4【分析】设,在中,,得.由勾股定理,再求AM,AB,证,.得,,可得.【详解】如图所示,,是的中点,,,.设,在中,,.,.,.,,,可得,同理可证.,,.故答案为:4【点睛】考核知识点:解直角三角形.构造直角三角形,利用三角形相关知识分析问题是关键.16、【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【详解】解:如图所示:的开口小于的开口,则a1>a2,故答案为:>.【点睛】此题主要考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键.17、1°【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA,∵OA,OB为半径,∴,∴,∴劣弧的度数等于,故答案为:1.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.18、15【分析】直接利用特殊角的三角函数值求出答案.【详解】解:tan(α+15°)=∴α+15°=30°,∴α=15°故答案是15【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.三、解答题(共78分)19、(1)点到桌面的距离为;(2)灯罩顶端到桌面的高度约为.【分析】(1)作CM⊥EF于M,BP⊥AD于P,交EF于N,则CM=BN,PN=3,由直角三角形的性质得出AP=AB=14,BP=AP=14,得出CM=BN=BP+PN=14+3即可;(2)作CM⊥EF于M,作BQ⊥CM于Q,BP⊥AD于P,交EF于N,则∠QBN=90°,CM=BN,PN=3,由(1)得QM=BN,求出∠CBQ=25,由三角函数得出CQ=BC×sin25,得出CM=CQ+QM即可.【详解】解当转动到与桌面平行时,如图2所示:作于于,交于则,即点到桌面的距离为;作于,作于于,交于,如图3所示:则,由得,在中,,即此时灯罩顶端到桌面的高度约为.【点睛】本题考查了解直角三角形、翻折变换的性质、含30角的直角三角形的性质等知识;通过作辅助线构造直角三角形是解题的关键.20、(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去)所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用21、(1);(2)【分析】(1)利用因式分解法求解;(2)在左右两边同时加上一次项系数-8的一半的平方后配方,再开方,即可得出两个一元一次方程,即可求解.【详解】解:(1),,,∴或,所以;(2)∵,∴,即,则,∴.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.22、(1)一次函数的解析式为y=﹣3x+9;(2)1<x<2;(3)点M的坐标为(3,0)或(﹣3,0).【解析】(1)首先求出A、B两点坐标,再利用待定系数法即可解决问题;(2)观察图象,一次函数的图象在反比例函数的图象上方,写出x的取值范围即可;(3)设直线AB交x轴于P,则P(3,0),设M(m,0),由S△AOB=S△OBM,可得S△AOP-S△OBP=S△OBM,列出方程即可解决问题.【详解】(1)∵点A(m,6)、B(n,3)在函数y=6∴m=1,n=2,∴A点坐标是(1,6),B点坐标是(2,3),把(1,6)、(2,3)代入一次函数y=kx+b中,得k+b=62k+b=3解得k=-3b=9∴一次函数的解析式为y=-3x+9;(2)观察图象可知,kx+b-6x>0时x的取值范围是1<x<2(3)设直线AB交x轴于P,则P(3,0),设M(m,0),∵S△AOB=S△OBM,∴S△AOP-S△OBP=S△OBM,∴12解得m=±3,∴点M的坐标为(3,0)或(-3,0).【点睛】本题考查一次函数与反比例函数的交点、待定系数法、一元一次不等式等知识,解题的关键是熟练掌握待定系数法,学会利用图象解决问题,学会构建方程解决问题.23、(1),;(1)P(0,5)或(0,1).【分析】(1)根据“点A是反比例函数图象上的一点,过点A作AB⊥x轴于点B,连接OA,△AOB的面积为1”即可求得k的值,从而得到反比例函数的解析式,分别将点A和点D的坐标代入反比例函数的解析式,即可求得点A和点D的坐标,用待定系数法求出a和b的值,即能求得一次函数的解析式,
(1)△PAC可以分成△PAD和△PCD,分别求出点A和点C到y轴的距离,根据“△PAC的面积为5”,求出PD的长度,结合点D的坐标,求出点P的坐标即可.【详解】解:(1)根据题意得:
k=-1×1=-4,
即反比例函数的解析式为,解得:
m=4,n=-1,
即点A(-1,4),点C(4,-1),
把点A(-1,4),C(4,-1)代入y=ax+b得:,解得:,即一次函数的解析式为:y=-x+3,
(1)把x=0代入y=-x+3得:y=3,
即点D(0,3),
点A到y轴的距离为1,点C到y轴的距离为4,
S△PAD=×PD×1=PD,
S△PCD=×PD×4=1PD,
S△PAC=S△PAD+S△PCD=PD=5,
PD=1,
∵点D(0,3),
∴点P的坐标为(0,1)或(0,5).【点睛】本题考查了反比例函数与一次函数的交点问题,根据题意和图示找出正确的等量关系式解决本题的关键.24、北塔的高度AB约为35米.【分析】设AE=x,根据在同一时间,物体高度与影子长度成正比例关系可得CD的长,在Rt△ADE中,由∠ADE=45°可得AE=DE=x,可得EF=(x-14)米,在Rt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小班幼儿防拐防骗安全教育实践
- 快递行业客户经理工作汇报
- 2025国内货物买卖合同范本
- 2025年国际许可合同范本-版权许可合同
- 我的教育故事课件
- 2025届安徽省滁州市定远育才学校高考模拟历史试题(含答案)
- 2025年电力资产运行委托合同示例
- 2025临时工劳动合同样本
- 2024-2025教科版科学一年级下册期中考试卷附答案
- 2025小学道德与法治教师课标考试模拟试卷及答案
- 小学三年级音乐《马兰谣》课件
- “当代文化参与”学习任务群相关单元的设计思路与教学建议课件(共51张PPT)
- 提高卧床患者踝泵运动的执行率品管圈汇报书模板课件
- 同理心的应用教学教材课件
- DB4102-T 025-2021海绵城市建设施工与质量验收规范-(高清现行)
- 城市轨道交通安全管理隐患清单
- 锡膏使用记录表
- 儿童保健学课件:绪论
- 中小学校园安全稳定工作岗位责任清单
- 校园安全存在问题及对策
- NY∕T 309-1996 全国耕地类型区、耕地地力等级划分
评论
0/150
提交评论