2023届湖北省随州市曾都区数学九年级上册期末学业水平测试试题含解析_第1页
2023届湖北省随州市曾都区数学九年级上册期末学业水平测试试题含解析_第2页
2023届湖北省随州市曾都区数学九年级上册期末学业水平测试试题含解析_第3页
2023届湖北省随州市曾都区数学九年级上册期末学业水平测试试题含解析_第4页
2023届湖北省随州市曾都区数学九年级上册期末学业水平测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.下列运算正确的是()A. B.C. D.2.如图,一张扇形纸片OAB,∠AOB=120°,OA=6,将这张扇形纸片折叠,使点A与点O重合,折痕为CD,则图中未重叠部分(即阴影部分)的面积为()A.9 B.12π﹣9 C. D.6π﹣3.下列图形中,主视图为①的是()A. B. C. D.4.若反比例函数y=图象经过点(5,-1),该函数图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限5.如图,从点看一山坡上的电线杆,观测点的仰角是45°,向前走到达点,测得顶端点和杆底端点的仰角分别是60°和30°,则该电线杆的高度()A. B. C. D.6.下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形7.方程是关于x的一元二次方程,则m的值是()A. B.C. D.不存在8.如图,点A,B,C,D在⊙O上,AB=AC,∠A=40°,CD∥AB,若⊙O的半径为2,则图中阴影部分的面积是()A. B. C. D.9.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=()A.80° B.100° C.110° D.120°10.如图,抛物线与轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①;②;③对于任意实数m,a+b≥am2+bm总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为A.1个 B.2个 C.3个 D.4个11.方程的解是()A. B. C., D.,12.已知点,如果把点绕坐标原点顺时针旋转后得到点,那么点的坐标为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.14.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.15.如图,菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,那么菱形ABCD的面积是____.16.如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).17.关于的方程有两个不相等的实数根,那么的取值范围是__________.18.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.三、解答题(共78分)19.(8分)如图,四边形OABC为平行四边形,B、C在⊙O上,A在⊙O外,sin∠OCB=.(1)求证:AB与⊙O相切;(2)若BC=10cm,求图中阴影部分的面积.20.(8分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以点O为圆心,OB为半径作圆,过点C作CD∥AB交⊙O于点D,连接BD(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)试判断四边形BOCD的形状,并证明你的判断;(3)已知AC=6,求扇形OBC所围成的圆锥的底面圆的半径r.21.(8分)已知a=,b=,求.22.(10分)如图,在平面直角坐标系中,正方形OABC的顶点A、C在坐标轴上,△OCB绕点O顺时针旋转90°得到△ODE,点D在x轴上,直线BD交y轴于点F,交OE于点H,OC的长是方程x2-4=0的一个实数根.(1)求直线BD的解析式.(2)求△OFH的面积.(3)在y轴上是否存在点M,使以点B、D、M三点为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,不必说明理由.23.(10分)某食品代理商向超市供货,原定供货价为元/件,超市售价为元/件.为打开市场超市决定在第一季度对产品打八折促销,第二季度再回升个百分点,为保证超市利润,代理商承诺在供货价基础上向超市返点试问平均每季度返多少个百分点,半年后超市的销售利润回到开始供货时的水平?24.(10分)如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.

(1)求该抛物线的解析式与顶点D的坐标.

(2)试判断△BCD的形状,并说明理由.

(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.25.(12分)万州区某民营企业生产的甲、乙两种产品,已知2件甲商品的出厂总价与3件乙商品的出厂总价相同,3件甲商品的出厂总价比2件乙商品的出厂总价多150元.(1)求甲、乙商品的出厂单价分别是多少元?(2)为促进万州经济持续健康发展,为商家搭建展示平台,为行业创造交流机会,2019年万州区举办了多场商品展销会.外地一经销商计划购进甲商品200件,购进乙商品的数量是甲的4倍,恰逢展销会期间该企业正在对甲商品进行降价促销活动,甲商品的出厂单价降低了,该经销商购进甲的数量比原计划增加了,乙的出厂单价没有改变,该经销商购进乙的数量比原计划减少了,结果该经销商付出的总货款与原计划的总货款恰好相同,求的值.26.如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据完全平方公式、同底数幂乘法、同底数幂除法、合并同类项法则逐一进行分析判断即可.【详解】因为,所以选项A错误;,所以B选项正确;,故选项C错误;因为与不是同类项,不能合并,故选项D错误,故选B.【点睛】本题考查了整式的运算,涉及了完全平方公式、同底数幂乘除法等,熟练掌握各运算的运算法则是解题的关键.2、A【分析】根据阴影部分的面积=S扇形BDO﹣S弓形OD计算即可.【详解】由折叠可知,S弓形AD=S弓形OD,DA=DO.∵OA=OD,∴AD=OD=OA,∴△AOD为等边三角形,∴∠AOD=60°.∵∠AOB=120°,∴∠DOB=60°.∵AD=OD=OA=6,∴AC=CO=3,∴CD=3,∴S弓形AD=S扇形ADO﹣S△ADO6×36π﹣9,∴S弓形OD=6π﹣9,阴影部分的面积=S扇形BDO﹣S弓形OD(6π﹣9)=9.故选:A.【点睛】本题考查了扇形面积与等边三角形的性质,熟练运用扇形公式是解答本题的关键.3、B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.4、D【解析】∵反比例函数y=的图象经过点(5,-1),

∴k=5×(-1)=-5<0,

∴该函数图象在第二、四象限.

故选D.5、A【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.【详解】解:延长PQ交直线AB于点E,设PE=x.

在直角△APE中,∠PAE=45°,

则AE=PE=x;

∵∠PBE=60°

∴∠BPE=30°

在直角△BPE中,,∵AB=AE-BE=6,则解得:∴在直角△BEQ中,故选:A【点睛】本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.6、B【分析】利用正方形的判定、平行四边形的性质,矩形的判定分别判断后即可确定正确的选项.【详解】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的矩形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选B.【点睛】本题考查了正方形的判定,平行四边形的性质,矩形的判定,熟练运用这些性质解决问题是本题的关键.7、B【分析】根据一元二次方程的定义进行求解即可.【详解】由题知:,解得,∴故选:B.【点睛】本题考查了利用一元二次方程的定义求参数的值,熟知一元二次方程的定义是解题的关键.8、B【分析】连接BC、OD、OC、BD,过O点作OE⊥CD于E点,先证△COD是等边三角形,再根据阴影部分的面积是S扇形COD-S△COD计算可得.【详解】如图所示,连接BC、OD、OC、BD,过O点作OE⊥CD于E点,

∵∠A=40°,AB=AC,

∴∠ABC=70°,

∵CD∥AB,

∴∠ACD=∠A=40°,

∴∠ABD=∠ACD=40°,

∴∠DBC=30°,

则∠COD=2∠DBC=60°,

又OD=OC,

∴△COD是等边三角形,∴OD=CD=2,DE=∴

则图中阴影部分的面积是S扇形COD-S△COD

故选:B.【点睛】本题主要考查扇形面积的计算,解题的关键是掌握等腰三角形和等边三角形的判定与性质、圆周角定理、扇形的面积公式等知识点.9、C【分析】直接利用圆内接四边形的性质分析得出答案.【详解】∵四边形ABCD内接于⊙O,E为CD延长线上一点,∠ADE=110°,∴∠B=∠ADE=110°.故选:C.【点睛】本题考查圆内接四边形的性质.熟练掌握圆内接四边形的性质:圆内接四边形的对角互补;.圆内接四边形的外角等于它的内对角是解题的关键.10、D【解析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.11、C【分析】先把从方程的右边移到左边,并把两边都除以4化简,然后用因式分解法求解即可.【详解】∵,∴,∴,∴,∴,.故选C.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.12、B【分析】连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M,根据旋转的性质,证明,再根据所在的象限,即可确定点的坐标.【详解】如图连接OP,OP1,过P作PN⊥y轴于N,过P1作P1M⊥y轴于M∵点绕坐标原点顺时针旋转后得到点∴∴∴,∴∵∴∵∴∵在第四象限∴点的坐标为故答案为:B.【点睛】本题考查了坐标轴的旋转问题,掌握旋转的性质是解题的关键.二、填空题(每题4分,共24分)13、【分析】由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14、﹣1【分析】由根与系数的关系可求得a+b与ab的值,代入求值即可.【详解】∵a,b是方程x2+x﹣2018=0的两个实数根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案为﹣1.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.15、1【分析】根据菱形的面积公式即可求解.【详解】∵菱形ABCD的对角线AC与BD相交于点O,AC=6,BD=8,∴菱形ABCD的面积为AC×BD=×6×8=1,故答案为:1.【点睛】此题主要考查菱形面积的求解,解题的关键是熟知其面积公式.16、①③④【分析】根据题意分别求出两个二次函数的解析式,根据函数的对称轴判定①;令x=0,求出y2的值,比较判定②;观察图象,判定③;令y=3,求出A、B、C的横坐标,然后求出AB、AC的长,判定④.【详解】∵抛物线y1=a(x+2)2+m与抛物线y2=(x﹣3)2+n的对称轴分别为x=-2,x=3,∴两条抛物线的对称轴距离为5,故①正确;∵抛物线y2=(x﹣3)2+n交于点A(1,3),∴2+n=3,即n=1;∴y2=(x﹣3)2+1,把x=0代入y2=(x﹣3)2+1得,y=≠5,②错误;由图象可知,当x>3时,y1>y2,∴x>3时,y1﹣y2>0,③正确;∵抛物线y1=a(x+2)2+m过原点和点A(1,3),∴,解得,∴.令y1=3,则,解得x1=-5,x2=1,∴AB=1-(-5)=6,∴A(1,3),B(-5,3);令y2=3,则(x﹣3)2+1=3,解得x1=5,x2=1,∴C(5,3),∴AC=5-1=4,∴BC=10,∴y轴是线段BC的中垂线,故④正确.故答案为①③④.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,已知函数值求自变量的值.17、且【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m>1且m≠1,求出m的取值范围即可.详解:∵一元二次方程mx2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m>1且m≠1,∴m<且m≠1,故答案为:m<且m≠1.点睛:本题考查了一元二次方程ax2+bx+c=1(a≠1,a,b,c为常数)根的判别式△=b2-4ac.当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.18、1【解析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=1.故答案是:1.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.三、解答题(共78分)19、(1)见解析(2).【分析】连接OB,由sin∠OCB=求出∠OCB=45,再根据OB=OC及三角形的内角和求出∠BOC=90,再由四边形OABC为平行四边形,得出∠ABO=90即OB⊥AB,由此切线得到证明;(2)先求出半径,再由-S△BOC即可求出阴影部分的面积.【详解】连接OB,∵sin∠OCB=,∴∠OCB=45,∵OB=OC,∴∠OBC=∠OCB=45,∴∠BOC=90,∵四边形OABC为平行四边形,∴OC∥AB,∴∠ABO=90,即OB⊥AB,∴AB与⊙O相切;(2)在Rt△OBC中,BC=10,sin∠OCB=,∴,∴-S△BOC=.【点睛】此题考查圆的切线的判定定理、圆中阴影面积的求法,切线的判定口诀:有交点,连半径,证垂直;无交点,作垂直,证半径,熟记口诀并熟练用于解题是关键.在求阴影面积时,直线放在三角形或多边形中,弧线放在扇形中,再根据面积加减的关系求得.20、(1)猜想:AC与⊙O相切;(2)四边形BOCD为菱形;(3)【解析】(1)根据等腰三角形的性质得∠A=∠ABC=30°,再由OB=OC得∠OCB=∠OBC=30°,所以∠ACO=∠ACB-∠OCB=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线;(2)连结OD,由CD∥AB得到∠AOC=∠OCD,根据三角形外角性质得∠AOC=∠OBC+∠OCB=60°,所以∠OCD=60°,于是可判断△OCD为等边三角形,则CD=OB=OC,先可判断四边形OBDC为平行四边形,加上OB=OC,于是可判断四边形BOCD为菱形;(3)在Rt△AOC中,根据含30度的直角三角形三边的关系得到OC=,再根据弧长公式计算出弧BC的弧长=然后根据圆锥的计算求圆锥的底面圆半径.【详解】(1)AC与⊙O相切,∠ACB=120°,∴∠ABC=∠A=30°.,∠CBO=∠BCO=30°,∴∠OCA=120°-30°=90°,∴AC⊥OC,又∵OC是⊙O的半径,∴AC与⊙O相切.(2)四边形BOCD是菱形连接OD.∵CD∥AB,∴∠OCD=∠AOC=2×30°=60°,∴△COD是等边三角形,,∴四边形BOCD是平行四边形,∴四边形BOCD是菱形.,(3)在Rt△AOC中,∠A=30°,AC=6,ACtan∠A=6tan30°=,∴弧BC的弧长∴底面圆半径【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的判定方法和圆锥的计算.21、1.【分析】先对已知a、b进行分母有理化,进而求得ab、a-b的值,再对进行适当变形即可求出式子的值.【详解】解:∵a=,b=,∴a=+2,b=﹣2,∴ab=1,a﹣b=4,∴===1.【点睛】本题主要考查了二次根式的化简求值、分母有理化,解答本题的关键是明确二次根式化简求值的方法和分母有理化的方法.22、(1)直线BD的解析式为:y=-x+1;(2)△OFH的面积为;(3)存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【分析】(1)根据求出坐标点B(-2,2),点D(2,0),然后代入一次函数表达式:y=kx+b得,利用待定系数法即可求出结果.(2)通过面积的和差,S△OFH=S△OFD-S△OHD,即可求解.(3)分情况讨论:当点M在y轴负半轴与当点M在y轴正半轴分类讨论.【详解】解:(1)x2-4=0,解得:x=-2或2,

故OC=2,即点C(0,2).∴OD=OC=2,即:D(2,0).又∵四边形OABC是正方形.∴BC=OC=2,即:B(-2,2).将点B(-2,2),点D(2,0)代入一次函数表达式:y=kx+b得:,解得:,

故直线BD的表达式为:y=-x+1.(2)直线BD的表达式为:y=-x+1,则点F(0,1),得OF=1.∵点E(2,2),∴直线OE的表达:y=x.解得:∴H∴S△OFH=S△OFD-S△OHD=-==(3)如图:当点M在y轴负半轴时.情况一:令BD=BM1,此时时,BD=BM1,此时是等腰三角形,此时M1(0,-2).情况二:令M2D=BD,此时,M2D2=BD2=,所以OM=,此时M2(0,-4).如图:当点M在y轴正半轴时.情况三:令M3D=BD,此时,M3D2=BD2=,所以OM=,此时M3(0,4).情况四:令BM4=BD,此时,BM42=BD2=,所以CM=,所以,OM=MC+OC=6,此时M4(0,6).综上所述,存在,M1(0,-4)、M2(0,-2)、M3(0,4)、M4(0,6)【点睛】本题考查的是一次函数综合运用,涉及到勾股定理、正方形的基本性质、解一元二次方程等,其中(3),要注意分类求解,避免遗漏.23、代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.【分析】设代理商平均每个季度向超市返个百分点,根据题意列出方程,解方程,即可得到答案.【详解】解:设代理商平均每个季度向超市返个百分点,由题意得:,解得:(舍去).∴代理商平均每个季度向超市返个百分点,半年后超市的利润回到开始供货时的水平.【点睛】本题考查了一元二次方程的应用,解题的关键是找到题目的等量关系,列出方程.24、(1)y=-x2-2x+1,(-1,4);(2)△BCD是直角三角形.理由见解析;(1)P1(0,0),P2(0,−),P1(−9,0).【分析】(1)利用待定系数法即可求得函数的解析式;

(2)利用勾股定理求得△BCD的三边的长,然后根据勾股定理的逆定理即可作出判断;

(1)分p在x轴和y轴两种情况讨论,舍出P的坐标,根据相似三角形的对应边的比相等即可求解.【详解】(1)设抛物线的解析式为y=ax2+bx+c

由抛物线与y轴交于点C(0,1),可知c=1.即抛物线的解析式为y=ax2+bx+1.

把点A(1,0)、点B(-1,0)代入,得解得a=-1,b=-2

∴抛物线的解析式为y=-x2-2x+1.

∵y=-x2-2x+1=-(x+1)2+4

∴顶点D的坐标为(-1,4);

(2)△BCD是直角三角形.

理由如下:过点D分别作x轴、y轴的垂线,垂足分别为E、F.

∵在Rt△BOC中,OB=1,OC=1,

∴BC2=OB2+OC2=18

在Rt△CDF中,DF=1,CF=OF-OC=4-1=1,

∴CD2=DF2+CF2=2

在Rt△BDE中,DE=4,BE=OB-OE=1-1=2,

∴BD2=DE2+BE2=20

∴BC2+CD2=BD2

∴△BCD为直角三角形.(1)①△BCD的三边,,又,故当P是原点O时,△ACP∽△DBC;

②当AC是直角边时,若AC与CD是对应边,设P的坐标是(0,a),则PC=1-a,,即,解得:a=-9,则P的坐标是(0,-9),三角形ACP不是直角三角形,则△ACP∽△CBD不成立;

③当AC是直角边,若AC与BC/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论