版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,在平行四边形中::若,则()A. B. C. D.2.如图,、分别与相切于、两点,点为上一点,连接,,若,则的度数为()A. B. C. D.3.如图,是的直径,点、在上.若,则的度数为()A. B. C. D.4.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是()A. B. C. D.5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.6.如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A.3 B.4 C.4.8 D.57.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A. B. C. D.8.已知点A(2,y1)、B(4,y2)都在反比例函数(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2 B.y1<y2 C.y1=y2 D.无法确定9.顺次连接四边形ABCD各边的中点,所得四边形是()A.平行四边形B.对角线互相垂直的四边形C.矩形D.菱形10.下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式;B.只有被开方数完全相同的二次根式才是同类二次根式;C.和是同类二次根式;D.和是同类二次根式.11.如图的中,,且为上一点.今打算在上找一点,在上找一点,使得与全等,以下是甲、乙两人的作法:(甲)连接,作的中垂线分别交、于点、点,则、两点即为所求(乙)过作与平行的直线交于点,过作与平行的直线交于点,则、两点即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确 B.两人皆错误C.甲正确,乙错误 D.甲错误,乙正确12.如图,△ABC中,AB=AC,∠ABC=70°,点O是△ABC的外心,则∠BOC的度数为()A.40° B.60° C.70° D.80°二、填空题(每题4分,共24分)13.如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段弧,三段圆弧围成的曲边三角形称为勒洛三角形,若这个等边三角形的边长为3,那么勒洛三角形(曲边三角形)的周长为_____.14.太原市某学校门口的栏杆如图所示,栏杆从水平位置绕定点旋转到位置,已知栏杆的长为的长为点到的距离为.支柱的高为,则栏杆端离地面的距离为__________.15.若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).16.小明向如图所示的区域内投掷飞镖,阴影部分时的内切圆,已知,,,如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.17.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是__.18.如图,在正方形中,,将绕点顺时针旋转得到,此时与交于点,则的长度为___________.三、解答题(共78分)19.(8分)如图,点C在以AB为直径的半圆⊙O上,AC=BC.以B为圆心,以BC的长为半径画圆弧交AB于点D.(1)求∠ABC的度数;(2)若AB=4,求阴影部分的面积.20.(8分)如图,A(8,6)是反比例函数y=(x>0)在第一象限图象上一点,连接OA,过A作AB∥x轴,且AB=OA(B在A右侧),直线OB交反比例函数y=的图象于点M(1)求反比例函数y=的表达式;(2)求点M的坐标;(3)设直线AM关系式为y=nx+b,观察图象,请直接写出不等式nx+b﹣≤0的解集.21.(8分)某课桌生产厂家研究发现,倾斜12°至24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度得桌面.新桌面的设计图如图1,可绕点旋转,在点处安装一根长度一定且处固定,可旋转的支撑臂,.(1)如图2,当时,,求支撑臂的长;(2)如图3,当时,求的长.(结果保留根号)(参考数据:,,,)22.(10分)如图1是超市的手推车,如图2是其侧面示意图,已知前后车轮半径均为5cm,两个车轮的圆心的连线AB与地面平行,测得支架AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,CD=50cm.(1)求扶手前端D到地面的距离;(2)手推车内装有简易宝宝椅,EF为小坐板,打开后,椅子的支点H到点C的距离为10cm,DF=20cm,EF∥AB,∠EHD=45°,求坐板EF的宽度.(本题答案均保留根号)23.(10分)如图,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一点O,使OB=OC,以O为圆心,OB为半径作圆,过C作CD∥AB交⊙O于点D,连接BD.(1)猜想AC与⊙O的位置关系,并证明你的猜想;(2)已知AC=6,求扇形OBC围成的圆锥的底面圆半径.24.(10分)LED显示屏(LEDdisplay)是一种平板显示器,可以显示计算机生成的动态图文画面.如图1是屏幕显示的一个正三角形网格的示意图,其中每个小正三角形的边长均为l.位于中点处的输入光点按图2的程序移动.(1)请在图1中画出光点经过的路径:(2)求光点经过的路径总长.25.(12分)如图,在平面直角坐标系中,点为坐标原点,每个小方格的边长为个单位长度,在第二象限内有横、纵坐标均为整数的两点,点,点的横坐标为,且.在平面直角坐标系中标出点,写出点的坐标并连接;画出关于点成中心对称的图形.26.如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)
参考答案一、选择题(每题4分,共48分)1、A【分析】先根据平行四边形的性质得到AB=CD,AB∥CD,再计算出AE:CD=1:3,接着证明△AEF∽△CDF,然后根据相似三角形的性质求解.【详解】∵四边形ABCD为平行四边形,
∴AB=CD,AB∥CD,
∵,
∴,
∴,
∵AE∥CD,
∴,
∴,
∴.
故选:A.【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.2、C【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】解:连接、,∵、分别与相切于、两点,∴,,∴.∴,∴.故选C.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.3、C【分析】根据圆周角定理计算即可.【详解】解:∵,∴,∴,故选:C.【点睛】此题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.5、C【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.6、D【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可.【详解】解:由图可得出,整理,得,解得,(不合题意,舍去).故选:D.【点睛】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键.7、B【详解】解:由题意得:俯视图与选项B中图形一致.故选B.【点睛】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.8、B【详解】试题分析:∵当k<0时,y=在每个象限内,y随x的增大而增大,∴y1<y2,故选B.考点:反比例函数增减性.9、A【解析】试题分析:连接原四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:如图,根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.考点:中点四边形.10、D【分析】根据同类二次根式的定义逐项分析即可.【详解】解:A、被开方数不同的二次根式若化简后被开方数相同,就是同类二次根式,故不正确;B.化成最简二次根式后,被开方数完全相同的二次根式才是同类二次根式,故不正确;C.和的被开方数不同,不是同类二次根式,故不正确;D.=和=,是同类二次根式,正确故选D.【点睛】本题考查了同类二次根式的定义,熟练掌握同类二次根式的定义是解答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式.11、A【分析】如图1,根据线段垂直平分线的性质得到,,则根据“”可判断,则可对甲进行判断;如图2,根据平行四边形的判定方法先证明四边形为平行四边形,则根据平行四边形的性质得到,,则根据“”可判断,则可对乙进行判断.【详解】解:如图1,垂直平分,,,而,,所以甲正确;如图2,,,∴四边形为平行四边形,,,而,,所以乙正确.故选:A.【点睛】本题考查作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质、平行四边形的判定与性质和三角形全等的判定.12、D【分析】首先根据等腰三角形的性质可得∠A的度数,然后根据圆周角定理可得∠O=2∠A,进而可得答案.【详解】解:∵AB=AC,
∴∠ABC=∠ACB=70°,
∴∠A=180°−70°×2=40°,
∵点O是△ABC的外心,
∴∠BOC=40°×2=80°,
故选:D.【点睛】此题主要考查了三角形的外接圆和外心,关键是掌握圆周角定理:在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.二、填空题(每题4分,共24分)13、3π.【分析】利用弧长公式计算.【详解】曲边三角形的周长=33π.故答案为:3π.【点睛】本题考查了弧长的计算:弧长公式:l(弧长为l,圆心角度数为n,圆的半径为R).也考查了等边三角形的性质.14、【分析】作DF⊥ABCG⊥AB,根据题意得△ODF∽△OCB,,得出DF,D端离地面的距离为DF+OE,即可求出.【详解】解:如图作DF⊥AB垂足为F,CG⊥AB垂足为G;∴∠DFO=∠CGO=90°∵∠DOA=∠COB∴△DFO∽△CGO则∵CG=0.3mOD=OA=3mOC=OB=3.5-3=0.5m∴DF=1.8m则D端离地面的距离=DF+OE=1.8+0.5=2.3m【点睛】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.15、<【解析】分析:根据反比例函数的增减性即可得出答案.详解:∵图像在二、四象限,∴在每一个象限内,y随着x的增大而增大,∵1<2,∴.点睛:本题主要考查的是反比例函数的增减性,属于基础题型.对于反比例函数,当k>0时,在每一个象限内,y随着x的增大而减小;当k<0时,在每一个象限内,y随着x的增大而增大.16、【分析】利用几何概率等于阴影部分的面积与三角形的面积之比即可得出答案.【详解】,,,∴是直角三角形,设圆的半径为r,利用三角形的面积有即解得∴阴影部分的面积为∵三角形的面积为∴飞镖落在阴影部分的概率为故答案为:.【点睛】本题主要考查几何概率,掌握几何概率的求法是解题的关键.17、1【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=1.考点:(1)菱形的性质;(2)三角形中位线定理.18、【分析】利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.【详解】解:由题意可得出:∠BDC=45°,∠DA′E=90°,
∴∠DEA′=45°,
∴A′D=A′E,
∵在正方形ABCD中,AD=1,
∴AB=A′B=1,
∴BD=,
∴A′D=,
∴在Rt△DA′E中,DE=.故答案为:.【点睛】此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.三、解答题(共78分)19、(1)∠ABC=45°;(2)【分析】(1)根据圆周角定理得到∠ACB=90°,根据等腰三角形的性质即可得到结论;
(2)根据扇形和三角形的面积公式即可得到结论.【详解】解:(1)∵AB为半圆⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠ABC=45°;(2)∵AB=4,∴BC=∴阴影部分的面积=.【点睛】本题考查了扇形面积的计算,圆周角定理,等腰直角三角形的性质,熟练掌握扇形的面积公式是解题的关键.20、(1)y=;(2)M(1,4);(3)0<x≤8或x≥1.【分析】(1)根据待定系数法即可求得;(2)利用勾股定理求得AB=OA=10,由AB∥x轴即可得点B的坐标,即可求得直线OB的解析式,然后联立方程求得点M的坐标;(3)根据A、M点的坐标,结合图象即可求得.【详解】解:(1)∵A(8,6)在反比例函数图象上∴6=,即m=48,∴反比例函数y=的表达式为y=;(2)∵A(8,6),作AC⊥x轴,由勾股定理得OA=10,∵AB=OA,∴AB=10,∴B(18,6),设直线OB的关系式为y=kx,∴6=18k,∴k=,∴直线OB的关系式为y=x,由,解得x=±1又∵在第一象限∴x=1故M(1,4);(3)∵A(8,6),M(1,4),观察图象,不等式nx+b﹣≤0的解集为:0<x≤8或x≥1.【点睛】本题主要考查一次函数与反比例函数的交点问题,解题的关键是掌握待定系数法求函数解析式及求直线、双曲线交点的坐标.21、(1)12cm;(2)12+6或12−6.【分析】(1)利用锐角三角函数关系得出,进而求出CD即可;(2)利用锐角三角函数关系得出,再由勾股定理求出DE、AE的值,即可求出AD的长度.【详解】解:(1)∵∠BAC=24°,,∴∴,∴支撑臂的长为12cm(2)如图,过点C作CE⊥AB,于点E,当∠BAC=12°时,∴∴∵CD=12,∴由勾股定理得:,∴AD的长为(12+6)cm或(12−6)cm【点睛】本题考查了解直角三角形的应用,熟练运用三角函数关系是解题关键.22、(1)35+;(2)坐板EF的宽度为()cm.【分析】(1)如图,构造直角三角形Rt△AMC、Rt△CGD然后利用解直角三角形分段求解扶手前端D到地面的距离即可;(2)由已知求出△EFH中∠EFH=60°,∠EHD=45°,然后由HQ+FQ=FH=20cm解三角形即可求解.【详解】解:(1)如图2,过C作CM⊥AB,垂足为M,又过D作DN⊥AB,垂足为N,过C作CG⊥DN,垂足为G,则∠DCG=60°,∵AC=BC=60cm,AC、CD所在直线与地面的夹角分别为30°、60°,∴∠A=∠B=30°,则在Rt△AMC中,CM==30cm.∵在Rt△CGD中,sin∠DCG=,CD=50cm,∴DG=CDsin∠DCG=50sin60°==,又GN=CM=30cm,前后车轮半径均为5cm,∴扶手前端D到地面的距离为DG+GN+5=+30+5=35+(cm).(2)∵EF∥CG∥AB,∴∠EFH=∠DCG=60°,∵CD=50cm,椅子的支点H到点C的距离为10cm,DF=20cm,∴FH=20cm,如图2,过E作EQ⊥FH,垂足为Q,设FQ=x,在Rt△EQF中,∠EFH=60°,∴EF=2FQ=2x,EQ=,在Rt△EQH中,∠EHD=45°,∴HQ=EQ=,∵HQ+FQ=FH=20cm,∴+x=20,解得x=,∴EF=2()=.答:坐板EF的宽度为()cm.【点睛】本题考查了解直角三角形的应用,解题的难点在于从实际问题中抽象出数学基本图形构造适当的直角三角形,难度较大.23、(1)见解析;(2).【解析】(1)根据等腰三角形的性质得∠ABC=∠A=30°,再由OB=OC和∠CBO=∠BCO=30°,所以∠OCA=120°﹣30°=90°,然后根据切线的判定定理即可得到,AC是⊙O的切线;(2)在Rt△AOC中,根据含30度的直角三角形三边的关系得到CO=,所以弧BC的弧长=,然后根据圆锥的计算求圆锥的底面圆半径.【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 拉萨市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解参考
- 2026年酒泉市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(培优)
- 鹤岗市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及答案详解(易错题)
- 2026年周口市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(综合卷)
- 2026年周口市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(突破训练)
- 长春市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(培优)
- 淮安市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)及参考答案详解一套
- 孝感市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)带答案详解(完整版)
- 广安市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)含答案详解(典型题)
- 2026年陇南市农村信用社联合社秋季校园招聘笔试备考题库(浓缩500题)附答案详解(能力提升)
- 少数民族语言文化保护与数字化转型-洞察阐释
- 合伙养猪合同协议书
- 2025年中考数学复习难题速递之代数式(2025年4月)
- 商城平台搭建合同协议
- 短视频在教育中的创新应用及发展前景
- 《复杂系统理论》课件
- 2025年个人参加巡察工作总结心得(二篇)
- 汽车维修配件供货及售后服务方案
- 基于物联网的智能设备销售合同
- 《铁路技术管理规程》(普速铁路部分)
- 2024年度广东省国家电网招聘之财务会计类通关题库(附答案)
评论
0/150
提交评论