燃煤电厂低低温电除尘提效改造项目分析_第1页
燃煤电厂低低温电除尘提效改造项目分析_第2页
燃煤电厂低低温电除尘提效改造项目分析_第3页
燃煤电厂低低温电除尘提效改造项目分析_第4页
燃煤电厂低低温电除尘提效改造项目分析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

燃煤电厂低低温电除尘提效改造项目分析低温静电除尘技术主要是通过在干式电除尘器(DESP)之前投加烟冷器,使热烟气和汽机冷凝水实现熱交换,烟气得以冷却,减少排烟热损失,同时将DESP的运行温度由130℃~150℃降低到85℃~90℃(烟气酸露点以下),不仅可脱除SO3、提高除尘效率,而且起到余热回收利用的效果,实现了保护环境和降低能耗的双重目的。早在“十一五”时期,国家把节约能源作为基本国策之一,要求发展循环经济,保护生态环境,加快建设资源节约型、环境友好型社会。现在到了“十三五”阶段的初期,我国节能减排形势依然严峻,且迫在眉睫。电力作为高耗能行业,将在降低能耗、提高经济效益中扮演着重要角色。某火力发电厂基于目前生产状况以及“十三五节能规划”的要求,实施了低低温电除尘提效改造项目,实现余热回收利用,达到节能减排的效果。同时,大大减少了SO2气体排放、提高了除尘效率,在保护地区环境中发挥了重要作用。1改造前后的工艺对比及技术原理改造前,原煤由煤斗送入锅炉的磨煤机,原煤被磨成煤粉以后进入锅炉进行燃烧,将水加热成过热蒸汽,从而推动汽轮机转子转动做功,整个过程经历了从化学能到热能,再转化成机械能的过程。汽轮机带动发电机发电,最终实现将机械能转变为电能。在发电过程中,汽轮机乏汽通过凝汽器冷却为冷凝水,经回热系统加热后经给水泵重新送入锅炉中;煤燃烧后产生的烟气经脱硝装置、空预器、电除尘、引风机、增压风机、脱硫装置后进入烟囱排至大气。据实测数据表明,排烟所带走的热量是锅炉运行中热损失最大的部分,占锅炉总输入热量的5%~8%,占锅炉的总热损失的70%~80%。一般而言,排烟温度每增加15℃~20℃,排烟热损失将增加1%,锅炉效率相应降低1%,导致煤耗增加。为保护尾部烟道、设备不受腐蚀,电厂必须将烟气温度控制在酸露点以上。按照国内常规设计,烟气温度需高于酸露点5℃~10℃,因此空预器出口烟气温度通常设定为120℃~130℃。而在湿法脱硫工艺中,吸收塔中的烟气为绝热饱和状态,温度(等焓过程)为50℃左右,即从120℃~150℃到50℃温差之间的热量全部损失了。改造后的工艺流程图如图1所示。改造后,低低温静电除尘技术则是通过在干式电除尘器(DESP)之前投加烟冷器,使热烟气和汽机冷凝水实现热交换,烟气冷却,将DESP的运行温度由130℃~150℃降低到85℃~90℃(烟气酸露点以下),实现余热回收利用,大大降低生产煤耗,实现经济效益和环境效益共赢。2节能效果及环境效益分析2.1节能效果分析实施了低低温静电除尘技术后,节能效果主要体现在余热回收利用。在烟冷器中,汽机冷凝水与烟气发生热交换,烟气温度由120℃~130℃降低到85℃的同时,加热了冷凝水。这不仅减少排烟热损失,还可预热即将返回锅炉的冷凝水,从而降低煤耗,给机组带来节能效益,可谓一举两得。2.1.1项目节能量测算的依据和基础数据(1)产品产量的依据。机组发电利用小时为5500h,年发电量:1000MW×5500h=550000万kW•h。(2)能耗的依据。2.1.2项目实施前后节能量计算根据烟冷器性能试验结果,低低温电除尘节能效果明显,统计如下。在1000MW负荷下分别投退烟冷器,测得锅炉修正后效率分别为94.445%、94.370%,汽机修正后热耗率分别为7408.58kJ/kW•h、7463.14kJ/kW•h,修正后供电煤耗分别为284.16g/kW•h、285.97g/kW•h,即烟冷器改造后降低机组供电煤耗1.81g/kW•h。在750MW负荷下分别投退烟冷器,测得锅炉修正后效率分别为94.397%、94.289%,汽机修正后热耗率分别为7511.86kJ/kW•h、7571.31kJ/kW•h,修正后供电煤耗分别为289.51g/kW•h、291.81g/kW•h,即烟冷器改造后降低机组供电煤耗2.30g/kW•h。在500MW负荷下分别投退烟冷器,测得锅炉修正后效率分别为94.381%、94.494%,汽机修正后热耗率分别为7691.92kJ/kW•h、7769.63kJ/kW•h,修正后供电煤耗分别为300.67g/kW•h、302.71g/kW•h,即烟冷器改造后降低机组供电煤耗2.04g/kW•h。相关的机组运行负荷分布按表1计算。2.1.3节能量计算改造前机组年综合能源消耗量=2000h×1000MW×285.97g/kW•h+2250h×1000MW×291.81g/kW•h+1250h×1000MW×302.71g/kW•h=1606900tce。改造后机组年综合能源消耗量=2000h×1000MW×284.16g/kW•h+2250h×1000MW×289.51g/kW•h+1250h×1000MW×300.67g/kW•h=1595555tce。由上述计算可知,项目实施前后每年节约标煤量=1606900tce-1595555tce=11345t标煤。2.2环境效益分析2.2.1脱除SO3脱除烟气中的SO3主要在于布置在空预器和静电除尘器之间的烟冷器。它是SO3慢速冷凝场所。当烟气温度降到酸露点以下,由于飞灰总表面积远大于换热器壳体和管表面面积,硫酸蒸汽将优先在飞灰颗粒表面上冷凝,并与飞灰中的碱性金属氧化物发生化学反应,生成硫酸盐,随后与飞灰一起被电除尘设备收走,致使烟气中的硫酸蒸汽量大大减少,SO3脱除率可达95%以上。2.2.2提高除尘效率(1)烟尘灰比电阻决定了除尘效果。当灰比电阻在104~1011Ω•cm区间时,电除尘器收尘效果最佳,比电阻过大或过小都会导致除尘效率急剧下降。若比电阻过小,荷电烟尘达到集尘极很快释放电荷,容易从极板上返回气流;若比电阻过大,荷电粒子在集尘极上缓慢释放电荷,烟尘积累容易产生反电晕现象。影响飞灰比电阻大小的因素很多,譬如飞灰碱性金属含量、煤的含硫量和水分等,一般高硫煤的比电阻低于低硫煤。(2)低低温静电除尘器的优势。其一,传统静电除尘器的操作温度在120℃~150℃之间,此时飞灰的比电阻最高,而低低温静电除尘器出口温度只有85℃左右,大幅度降低了飞灰比电阻,使静电除尘器依然能高效收尘。另外,飞灰表面吸收了SO3后,比电阻进一步降低,可通过后续的干式静电除尘器脱除。其二,在烟尘入口浓度不变,静电除尘器总集尘面积相同条件下,出口烟尘浓度与趋近速度和体积流量呈指数关系。当烟气温度从150℃降低到85℃,烟气体积将减少16%左右,在相同条件下,意味着比集尘面积提高了16%,飞灰趋近速度可增加70%左右,可提高ESP对细颗粒的捕集效率。(1)与传统的烟气治理技术相比,低低温静电除尘技术具有脱除SO3、提高除尘效率、降低排烟温度从而减少热损失以及余热回收利用的特点。(2)项目实施后,每年可节省11345t标准煤,降低生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论