




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知抛物线在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A. B. C. D.2.点在二次函数y=x2+3x﹣5的图像上,x与y对应值如下表:那么方程x2+3x﹣5=0的一个近似根是()A.1 B.1.1 C.1.2 D.1.33.如图,是由等腰直角经过位似变换得到的,位似中心在轴的正半轴,已知,点坐标为,位似比为,则两个三角形的位似中心点的坐标是()A. B. C. D.4.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.; B.; C.; D.;5.设a、b是一元二次方程x2﹣2x﹣1=0的两个根,则a2+a+3b的值为()A.5 B.6 C.7 D.86.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上7.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.8.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.9.点P1(﹣1,),P2(3,),P3(5,)均在二次函数的图象上,则,,的大小关系是()A. B. C. D.10.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是()A.a>-1 B. C. D.a>-1且二、填空题(每小题3分,共24分)11.已知一元二次方程有一个根为,则另一根为________.12.在△ABC中,∠C=90°,cosA=,则tanA等于.13.如果函数是二次函数,那么k的值一定是________.14.如图,Rt△ABC中,∠A=90°,∠B=30°,AC=6,以A为圆心,AC长为半径画四分之一圆,则图中阴影部分面积为__________.(结果保留π)15.如图,⊙O是等边△ABC的外接圆,弦CP交AB于点D,已知∠ADP=75°,则∠POB等于_______°.16.如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针旋转180º,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180º,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为___cm.17.如图,RtΔABC绕直角顶点C顺时针旋转90°,得到ΔDEC,连接AD,若∠BAC=25°,则∠ADE=_________18.如图,让此转盘自由转动两次,两次指针都落在阴影部分区域(边界宽度忽略不记)的概率是____________.三、解答题(共66分)19.(10分)如图,抛物线经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:(1)求抛物线的解析式及顶点D的坐标;(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为20.(6分)商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.(1)填表:每天的销售量/台每台销售利润/元降价前8400降价后(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?21.(6分)已知抛物线与轴交于点.(1)求点的坐标和该抛物线的顶点坐标;(2)若该抛物线与轴交于两点,求的面积;(3)将该抛物线先向左平移个单位长度,再向上平移个单位长度,求平移后的抛物线的解析式(直接写出结果即可).22.(8分)已知抛物线.(1)当x为何值时,y随x的增大而减小;(2)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出平移后的抛物线表达式.23.(8分)如图,在中,,,,点从点出发沿以的速度向点移动,移动过程中始终保持,(点分别在线段、线段上).(1)点移动几秒后,的面积等于面积的四分之一;(2)当四边形面积时,求点移动了多少秒?24.(8分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.25.(10分)赵化鑫城某超市购进了一批单价为16元的日用品,销售一段时间后,为获得更多的利润,商场决定提高销售的价格,经试验发现,若按每件20元销售,每月能卖360件;若按每件25元销售,每月能卖210件;若每月的销售件数y(件)与价格x(元/件)满足y=kx+b.(1)求出k与b的值,并指出x的取值范围?(2)为了使每月获得价格利润1920元,商品价格应定为多少元?(3)要使每月利润最大,商品价格又应定为多少?最大利润是多少?26.(10分)某化工厂要在规定时间内搬运1200吨化工原料.现有,两种机器人可供选择,已知型机器人比型机器人每小时多搬运30吨型,机器人搬运900吨所用的时间与型机器人搬运600吨所用的时间相等.(1)求两种机器人每小时分别搬运多少吨化工原料.(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,型机器人又有了新的搬运任务需离开,但必须保证这批化工原料在11小时内全部搬运完毕.问型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成?
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:由抛物线开口向上可知a>0,故A错误;由对称轴在轴右侧,可知a、b异号,所以b<0,故B错误;由图象知当x=1时,函数值y小于0,即a+b+c<0,故C错误;由图象知当x=-2时,函数值y大于0,即4a-2b+c>0,故D正确;故选D考点:二次函数中和符号2、C【分析】观察表格可得0.04更接近于0,得到所求方程的近似根即可.【详解】解:观察表格得:方程x2+3x−5=0的一个近似根为1.2,故选:C.【点睛】此题考查了图象法求一元二次方程的近似根,弄清表格中的数据是解本题的关键.3、A【分析】先确定G点的坐标,再结合D点坐标和位似比为1:2,求出A点的坐标;然后再求出直线AG的解析式,直线AG与x的交点坐标,即为这两个三角形的位似中心的坐标..【详解】解:∵△ADC与△EOG都是等腰直角三角形∴OE=OG=1∴G点的坐标分别为(0,-1)∵D点坐标为D(2,0),位似比为1:2,∴A点的坐标为(2,2)∴直线AG的解析式为y=x-1∴直线AG与x的交点坐标为(,0)∴位似中心P点的坐标是.故答案为A.【点睛】本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键.4、A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得
∠BCD=∠A
tan∠BCD=tan∠A=,
故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.5、C【分析】根据根与系数的关系可得a+b=2,根据一元二次方程的解的定义可得a2=2a+1,然后把a2+a+3b变形为3(a+b)+1,代入求值即可.【详解】由题意知,a+b=2,a2-2a-1=0,即a2=2a+1,则a2+a+3b=2a+1+a+3b=3(a+b)+1=3×2+1=1.故选C.【点睛】本题考查了根与系数的关系及一元二次方程的解,难度适中,关键掌握用根与系数的关系与代数式变形相结合进行解题.6、B【分析】由题意直接根据事件发生的可能性大小进行判断即可.【详解】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.注意掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,
其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.8、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,,,,且,,故选:.【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.9、D【解析】试题分析:∵,∴对称轴为x=1,P2(3,),P3(5,)在对称轴的右侧,y随x的增大而减小,∵3<5,∴,根据二次函数图象的对称性可知,P1(﹣1,)与(3,)关于对称轴对称,故,故选D.考点:二次函数图象上点的坐标特征.10、D【解析】利用一元二次方程的定义及根的判别式列不等式a≠1且△=22﹣4a×(﹣1)>1,从而求解.【详解】解:根据题意得:a≠1且△=22﹣4a×(﹣1)>1,解得:a>﹣1且a≠1.故选D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.二、填空题(每小题3分,共24分)11、4【分析】先把x=2代入一元二次方程,即可求出c,然后根据一元二次方程求解即可.【详解】解:把x=2代入得4﹣12+c=0c=8,(x-2)(x-4)=0x1=2,x2=4,故答案为4.【点睛】本题主要考查解一元二次方程,解题的关键是求出c的值.12、.【解析】试题分析:∵在△ABC中,∠C=90°,cosA=,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理.13、-1【解析】根据二次函数的定义判定即可.【详解】∵函数是二次函数,∴k2-7=2,k-1≠0解得k=-1.故答案为:-1.【点睛】此题主要考查了二次函数的定义,正确把握二次函数的定义是解题关键.14、9﹣3π【解析】试题解析:连结AD.∵直角△ABC中,∠A=90°,∠B=30°,AC=6,∴∠C=60°,AB=6,∵AD=AC,∴三角形ACD是等边三角形,∴∠CAD=60°,∴∠DAE=30°,∴图中阴影部分的面积=15、90【分析】先根据等边三角形的的性质和三角形的外角性质求出∠ACP,进而求得可得∠BCP,最后根据圆周角定理∠BOP=2∠BCP=90°.【详解】解:∵∠A=∠ACB=60°,∠ADP=75°,∴∠ACP=∠ADP-∠A=15°,∴∠BCP=∠ACB-∠ACP=45°,∴∠BOP=2∠BCP=90°.故答案为90.【点睛】此题主要考查了等边三角形的的性质,三角形外角的性质,以及圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16、【分析】首先确定剪拼之后的四边形是个平行四边形,其周长大小取决于MN的大小.然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决.【详解】解:画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,其周长为2N1N2+2M1N1=2BC+2MN.∵BC=6为定值,∴四边形的周长取决于MN的大小.如答图2所示,是剪拼之前的完整示意图,过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,∵M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;而MN的最大值等于矩形对角线的长度,即,四边形M1N1N2M2的周长=2BC+2MN=12+2MN,∴最大值为12+2×=12+.故答案为:12+.【点睛】此题通过图形的剪拼,考查了动手操作能力和空间想象能力,确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键.17、20°【分析】由题意根据旋转的性质可得AC=CD,∠CDE=∠BAC,再判断出△ACD是等腰直角三角形,然后根据等腰直角三角形的性质求出∠CAD=45°,根据∠ADE=∠CED-∠CAD.【详解】解:∵Rt△ABC绕其直角顶点C按顺时针方向旋转90°后得到△DEC,∴AC=CD,∠CDE=∠BAC=25°,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠ADE=∠CED-∠CAD=45°-25°=20°.故答案为:20°.【点睛】本题考查旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确掌握理解图示是解题的关键.18、【分析】先将非阴影区域分成两等份,然后根据列表格列举所有等可能的结果与指针都落在阴影区域的情况,再利用概率公式即可求解.【详解】解:如图,将非阴影区域分成两等份,设三份区域分别为A,B,C,其中C为阴影区域,列表格如下,由表可知,共有9种结果,且每种结果出现的可能性相同,其中两次指针都落在阴影区域的有1种,为(C,C),所以两次指针都落在阴影区域的概率为P=.故答案为:【点睛】本题考查了列表法或树状图求两步事件概率问题,将非阴影区域分成两等份,保证是等可能事件是解答此题的关键.三、解答题(共66分)19、(1)
,D(1,4);(2)PD+PH最小值【分析】(1)根据题意把已知两点的坐标代入,求出b、c的值,就可以确定抛物线的解析式,配方或用公式求出顶点坐标;(2)由题意根据B、D两点的坐标确定中点H的坐标,作出H点关于y轴的对称点点H′,连接H′D与y轴交点即为P,求出H′D即可.【详解】解:(1)∵抛物线过点A(-1,0),B(3,0),∴,解得,∴所求函数的解析式为:,化为顶点式为:=-(x-1)2+4,∴顶点D(1,4);(2)∵B(3,0),D(1,4),∴中点H的坐标为(2,2)其关于y轴的对称点H′坐标为(-2,2),连接H′D与y轴交于点P,则PD+PH最小且最小值为:.【点睛】本题考查用待定系数法确定二次函数的解析式和最短路径的问题,熟练掌握待定系数法是关键.20、(1),;(2)1.【分析】(1)利润=一台冰箱的利润×销售数量,一台冰箱的利润=售价-进价,降低售价的同时,销售量会提高;(2)根据每台的利润×销售数量列出函数关系式,再根据二次函数的性质,求利润的最大值.【详解】解:(1)降价后销售数量为;降价后的利润为:400-x,故答案为:,;(2)设总利润为y元,则∵,开口向下∴当时,最大此时售价为(元)答:每台冰箱的实际售价应定为1元时,利润最大.【点睛】本题考查了二次函数的实际应用中的销售问题,解题的关键是分析题意,找出关键的等量关系,列出函数关系式.21、(1)(0,5);;(2)15;(3)【分析】(1)令x=0即可得出点C的纵坐标,从而得出点C的坐标;利用配方法将抛物线表达式进行变形即可得出顶点坐标(2)求出A,B两点的坐标,进而求出A与B的距离,由C点坐标可知OC的长,即可得出答案(3)根据平移的规律结合原抛物线表达式即可得出答案.【详解】解:(Ⅰ)当时,,故点,则抛物线的表达式为:,故顶点坐标为:;(2)令,解得:或,则,则;(3)∵∴平移后的抛物线表达式为:【点睛】本题考查的知识点是二次函数图象与几何变换以及二次函数的性质,此题较为基础,易于掌握.22、(1);(2).【分析】(1)由题意利用配方法将抛物线的一般解析式化为顶点式,再根据二次函数的性质进行分析即可求得;(2)由题意根据平移的规律即左加右减,上加下减进行分析即可求得平移后的抛物线表达式.【详解】解:(1)配方,得.∵,∴抛物线开口向上.∴当时,y随x的增大而减小.(2)抛物线向右平移2个单位,再向上平移2个单位得到新抛物线的表达式为:.【点睛】本题考查二次函数的性质以及二次函数图象的平移规律,其中利用配方法把解析式由一般式变为顶点式是解答本题的关键.23、(1)2秒;(2)3秒.【分析】(1)证得△ABC、△ADE和△DBF都是等腰直角三角形,利用,列式计算即可;(2)根据,列式计算即可求得答案.【详解】(1)设移动秒,的面积等于面积的四分之一,∵,,,∴△ABC为等腰直角三角形,,∵,,∴△ADE和△DBF都是等腰直角三角形,
∴,,∵,∴,即,解得:(秒);(2)设移动秒,四边形面积,由(1)得:,,∵,∴即解得:(秒).【点睛】本题主要考查了列代数式以及一元二次方程的应用,等腰三角形的判定和性质,利用三角形的面积公式,找出关于的一元二次方程是解题的关键.24、(1);(2)【解析】(1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.【详解】(1);(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:弟弟姐姐ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B乔治)【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.25、(1)k=﹣30,b=960,x取值范围为16≤x≤32;(2)商品的定价为24元;(3)商品价格应定为24元,最大利润是1元.【分析】(1)根据待定系数法求解即可;根据单价不低于进价(16元)和销售件数y≥0可得关于x的不等式组,解不等式组即得x的取值范围;(2)根据每件的利润×销售量=1,可得关于x的方程,解方程即可求出结果;(3)设每月利润为W元,根据W=每件的利润×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场活动促销方案模板
- 新质生产力与数字经济关系
- 2025年口腔医学影像学知识考察答案及解析
- 工程力学 课件 剪切的概念
- 新质生产力创新的核心要素
- 2025年急诊医学危重症处理技能模拟考试答案及解析
- 2025年内分泌科糖尿病合并症危重病例处理模拟考试答案及解析
- 2025年妇产科妊娠合并糖尿病临床管理规范论述题考试卷答案及解析
- 2025年病理学疑难病例解剖讨论答案及解析
- 2025年流行病学慢性非传染性疾病流行规律研究模拟试卷答案及解析
- 中康科技腾讯健康:2024年消费者健康洞察呼吸系列报告-鼻炎鼻窦炎篇预览版
- 2025年IT技术支持工程师招聘面试问题及答案解析
- 挤压模具工特殊工艺考核试卷及答案
- 2025-2026学年外研版八年级英语上册教学计划及进度表
- (2025年标准)灵活用工协议书
- 发廊租工位合同协议模板
- 服装厂质检知识培训内容课件
- 2025年教师资格考试趋势分析与模拟试题洞察未来方向(含答案)
- 2025浙江省旅游投资集团人才招聘17人(第四批)考试模拟试题及答案解析
- 上消化道出血药物指导
- 南通蓝印花布课件
评论
0/150
提交评论