2022-2023学年福建省厦门市第二十七中学高一数学理月考试卷含解析_第1页
2022-2023学年福建省厦门市第二十七中学高一数学理月考试卷含解析_第2页
2022-2023学年福建省厦门市第二十七中学高一数学理月考试卷含解析_第3页
2022-2023学年福建省厦门市第二十七中学高一数学理月考试卷含解析_第4页
2022-2023学年福建省厦门市第二十七中学高一数学理月考试卷含解析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年福建省厦门市第二十七中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=的零点所在的区间是(

)A.(0,)

B.(,1)

C.(1,)

D.(,2)参考答案:B略2.将“x2+y2≥2xy”改写成全称命题,下列说法正确的是(

)A.,都有

B.,都有C.,都有

D.,都有参考答案:A3.已知函数f(x)为偶函数,且对于任意的,都有,设,,则()A. B. C. D.参考答案:C【分析】首先判断函数在的单调性,然后根据偶函数化简,然后比较2,,的大小,比较的大小关系.【详解】若,则函数在是单调递增函数,并且函数是偶函数满足,即,,在单调递增,,即.故选C.【点睛】本题考查利用函数的奇偶性和函数的单调性比较函数值的大小,意在考查函数性质的应用,意在考查转化和变形能力,属于基础题型.4.已知已知定义在上的偶函数在上是单调增函数,若,则的范围为

参考答案:略5.公比为整数的等比数列中,如果那么该数列的前项之和为(

)A.

B.

C.

D.参考答案:C

6.已知,不等式的解集是(-1,3),若对于任意,不等式恒成立,则t的取值范围(

)A.(-∞,2] B.(-∞,-2] C.(-∞,-4] D.(-∞,4]参考答案:B【分析】由不等式的解集是,可得b、c的值,代入不等式f(x)+t≤4后变量分离得t≤2x2﹣4x﹣2,x∈[﹣1,0],设g(x)=2x2﹣4x﹣2,求g(x)在区间[﹣1,0]上的最小值可得答案.【详解】由不等式的解集是可知-1和3是方程的根,,解得b=4,c=6,,不等式化为,令g(x)=2x2﹣4x﹣2,,由二次函数图像的性质可知g(x)在上单调递减,则g(x)的最小值为g(0)=-2,故选:B【点睛】本题考查一元二次不等式的解法,考查不等式的恒成立问题,常用方法是变量分离,转为求函数最值问题.7.若的定义域为[1,4],则的定义域为(

)A[0,]

B[0,6]

C[,]

D[3,]参考答案:B略8.下列函数中,在区间(0,1)上是增函数的是(

)A.

B.

C.

D.

参考答案:B9.一个容器装有细沙,细沙从容器底下一个细微的小孔慢慢地均速漏出,tmin后剩余的细沙量为,经过8min后发现容器内还有一半的沙子,则再经过()min,容器中的沙子只有开始时的八分之一.A.8

B.16

C.24

D.32参考答案:B10.设满足约束条件组,若目标函数的最大值为24,则的最小值为

A.

B.

C.

D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.已知函数满足对任意,都有成立,则实数的取值范围是

.参考答案:12.已知角α的终边上一点的坐标为的最小正值为.参考答案:【考点】三角函数的周期性及其求法.【分析】先α的终边上一点的坐标化简求值,确定α的正余弦函数值,在再确定角α的取值范围.【解答】解:由题意可知角α的终边上一点的坐标为(sin,cos),即(,﹣)∴sinα=﹣,cosα=∴α=(k∈Z)故角α的最小正值为:故答案为:【点评】本题主要考查三角函数值的求法.属基础题.13.幂函数为偶函数,且在上单调递增,则实数

参考答案:114.D、E、F分别为△ABC的边BC、CA、AB上的中点,且,给出下列命题:①;②;③;④,其中正确命题的序号为

参考答案:②③④15.比较大小:

则从小到大的顺序为

参考答案:c<a<b

16.在半径为10米的圆形弯道中,120°角所对应的弯道长为

米.参考答案:弯道长是半径为10,圆心角为即弧度所对的弧长。由弧长公式得弧长为。17.已知幂函数过点,则函数的解析式是__________.参考答案:设幂函数的解析式为:,∵幂函数过点,∴,解得:,故函数的解析式为:.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,内角A、B、C所对边长分别为、、,已知.(1)若△ABC的面积等于,求、的值;(2)若,求△ABC的面积.参考答案:(1)∵,∴

①又,∴

②由①②得,

…………6′(2)∵∴,即∴或当,即时,又,,∴,∴当,即时,又,,∴正三角形面积∴△ABC的面积或

…………12′

略19.已知函数f(x)=x﹣a,g(x)=a|x|,a∈R.(1)设F(x)=f(x)﹣g(x).①若a=,求函数y=F(x)的零点;②若函数y=F(x)存在零点,求a的取值范围.(2)设h(x)=f(x)+g(x),x∈[﹣2,2],若对任意x1,x2∈[﹣2,2],|h(x1)﹣h(x2)|≤6恒成立,试求a的取值范围.参考答案:【考点】函数恒成立问题;函数零点的判定定理.【分析】(1)设F(x)=f(x)﹣g(x).①若a=,由F(x)=0,即可求得F(x)的零点;②若函数y=F(x)存在零点,则x﹣a=a|x|,等号两端构造两个函数,当a>0时,在同一坐标系中作出两函数的图象,即可求得满足题意的a的取值范围的一部分;同理可得当a<0时的情况,最后取并即可求得a的取值范围.(2)h(x)=f(x)+g(x),x∈[﹣2,2],对任意x1,x2∈[﹣2,2],|h(x1)﹣h(x2)|≤6恒成立?h(x1)max﹣h(x2)min≤6,分a≤﹣1、﹣1<a<1、a≥1三类讨论,即可求得a的取值范围.【解答】解:(1)F(x)=f(x)﹣g(x)=x﹣a﹣a|x|,①若a=,则由F(x)=x﹣|x|﹣=0得:|x|=x﹣,当x≥0时,解得:x=1;当x<0时,解得:x=(舍去);综上可知,a=时,函数y=F(x)的零点为1;②若函数y=F(x)存在零点,则x﹣a=a|x|,当a>0时,作图如下:由图可知,当0<a<1时,折线y=a|x|与直线y=x﹣a有交点,即函数y=F(x)存在零点;同理可得,当﹣1<a<0时,求数y=F(x)存在零点;又当a=0时,y=x与y=0有交点(0,0),函数y=F(x)存在零点;综上所述,a的取值范围为(﹣1,1).(2)∵h(x)=f(x)+g(x)=x﹣a+a|x|,x∈[﹣2,2],∴当﹣2≤x<0时,h(x)=(1﹣a)x﹣a;当0≤x≤2时,h(x)=(1+a)x﹣a;又对任意x1,x2∈[﹣2,2],|h(x1)﹣h(x2)|≤6恒成立,则h(x1)max﹣h(x2)min≤6,①当a≤﹣1时,1﹣a>0,1+a≤0,h(x)=(1﹣a)x﹣a在区间[﹣2,0)上单调递增;h(x)=(1+a)x﹣a在区间[0,2]上单调递减(当a=﹣1时,h(x)=﹣a);∴h(x)max=h(0)=﹣a,又h(﹣2)=a﹣2,h(2)=2+a,∴h(x2)min=h(﹣2)=a﹣2,∴﹣a﹣(a﹣2)=2﹣2a≤6,解得a≥﹣2,综上,﹣2≤a≤﹣1;②当﹣1<a<1时,1﹣a>0,1﹣a>0,∴h(x)=(1﹣a)x﹣a在区间[﹣2,0)上单调递增,且h(x)=(1+a)x﹣a在区间[0,2]上也单调递增,∴h(x)max=h(2)=2+a,h(x2)min=h(﹣2)=a﹣2,由a+2﹣(a﹣2)=4≤6恒成立,即﹣1<a<1适合题意;③当a≥1时,1﹣a≤0,1+a>0,h(x)=(1﹣a)x﹣a在区间[﹣2,0)上单调递减(当a=1时,h(x)=﹣a),h(x)=(1+a)x﹣a在区间[0,2]上单调递增;∴h(x)min=h(0)=﹣a;又h(2)=2+a>a﹣2=h(﹣2),∴h(x)max=h(2)=2+a,∴2+a﹣(﹣a)=2+2a≤6,解得a≤2,又a≥1,∴1≤a≤2;综上所述,﹣2≤a≤2.20.(12分)已知函数.(Ⅰ)求在区间[]上的最大值和最小值; (Ⅱ)若在[2,4]上是单调函数,求的取值范围.参考答案:即m≤2或m≥6.故m的取值范围是(-∞,2]∪[6,+∞).------------------12分21.Sn为数列{an}的前n项和,已知对任意,都有,且.(1)求证:{an}为等差数列;(2)设,求数列{bn}的前n项和Tn.参考答案:(1)见解析;(2)【分析】(1)利用与的关系将条件转化为递推关系,化简即可得,即由定义可证.(2)利用等差数列通项公式求出,从而求得,利用裂项求和法即可求出其前项和.【详解】(1),

①当时,

①-②得,即,∵,∴即,∴为等差数列(2)由已知得,即解得(舍)或∴∴∴【点睛】本题主要考查了等差数列证明,以及裂项求和法的应用,属于中档题.等差数列的证明主要有两种方法:(1)定义法,证得即可,其中为常数;(2)等差中项法:证得即可.22.因发生意外交通事故,一辆货车上的某种液体泄漏到一鱼塘中.为了治污,根据环保部门的建议,现决定在鱼塘中投放一种可与污染液体发生化学反应的药剂.已知每投放,且个单位的药剂,它在水中释放的浓度(克/升)随着时间(天)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论