2022-2023学年高二数学文期末试题含解析_第1页
2022-2023学年高二数学文期末试题含解析_第2页
2022-2023学年高二数学文期末试题含解析_第3页
2022-2023学年高二数学文期末试题含解析_第4页
2022-2023学年高二数学文期末试题含解析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数在处有极值10,则m,n的值是(

)A.

B.C. D.参考答案:B2.平面内有两定点A、B及动点P,设命题甲:“|PA|+|PB|是常数”,命题乙:“点P的轨迹是以A,B为焦点的椭圆”,那么甲是乙成立的A.充分不必要条件 B.必要不充分条件C.充要条件 D.非充分非必要条件参考答案:B3.“若x≠a且x≠b,则x2-(a+b)x+ab≠0”的否命题是

)A.若x=a且x=b,则x2-(a+b)x+ab=0B.若x=a或x=b,则x2-(a+b)x+ab≠0C.若x=a且x=b,则x2-(a+b)x+ab≠0D.若x=a或x=b,则x2-(a+b)x+ab=0参考答案:D略4.一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如下图所示,则该几何体的俯视图为()参考答案:C略5.用反证法证明“三角形中至少有一个内角不小于60°”,应先假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°参考答案:B【考点】R9:反证法与放缩法.【分析】找到“三角形的内角中至少有一个不小于60°”的对立事件,由此能求出结果.【解答】解:∵“三角形的内角中至少有一个不小于60°”的对立事件是:“三角形中每一个内角都小于60°”,∴反证法证明三角形中至少有一个内角不小于60°,应假设三角形中每一个内角都小于60°.故选:B.6.三个数的大小关系为(

)

A.

B.

C.

D.

参考答案:A7.n∈N且n<55,则乘积(55﹣n)(56﹣n)…(69﹣n)等于()A. B. C. D.参考答案:B【考点】D4:排列及排列数公式.【分析】由于要求的式子是15个连续自然数的乘积,最大的为69﹣n,根据排列数公式得出结论.【解答】解:∵n∈N且n<55,则乘积(55﹣n)(56﹣n)…(69﹣n)是15个连续自然数的乘积,最大的为69﹣n,故(55﹣n)(56﹣n)…(69﹣n)=,故选:B.【点评】本题主要考查排列数公式,属于基础题.8.设圆锥曲线r的两个焦点分别为F1,F2,若曲线r上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则曲线r的离心率等于()A. B.或2 C.2 D.参考答案:A【考点】圆锥曲线的共同特征.【分析】根据题意可设出|PF1|,|F1F2|和|PF2|,然后分曲线为椭圆和双曲线两种情况,分别利用定义表示出a和c,则离心率可得.【解答】解:依题意设|PF1|=4t,|F1F2|=3t,|PF2|=2t,若曲线为椭圆则2a=|PF1|+|PF2|=6t,c=t则e==,若曲线为双曲线则,2a=4t﹣2t=2t,a=t,c=t∴e==故选A【点评】本题主要考查了圆锥曲线的共同特征.关键是利用圆锥曲线的定义来解决.9.已知点是圆上任意一点,则的取值范围是A.

B.

C.[-1,1]

D.(-∞,-1]∪[1,+∞)参考答案:C10.三棱锥SABC及其三视图中的正视图和侧视图如图所示,则棱SB的长为()A.4 B. C. D.参考答案:A【考点】简单空间图形的三视图.【分析】由已知中的三视图可得SC⊥平面ABC,底面△ABC为等腰三角形,SC=4,△ABC中AC=4,AC边上的高为2,进而根据勾股定理得到答案.【解答】解:由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形,在△ABC中AC=4,AC边上的高为2,故BC=4,在Rt△SBC中,由SC=4,可得SB=4,故选A.【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.二、填空题:本大题共7小题,每小题4分,共28分11.当k>0时,两直线与轴围成的三角形面积的最大值为

.参考答案:12.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为

.参考答案:0.65【考点】C5:互斥事件的概率加法公式;C9:相互独立事件的概率乘法公式.【分析】敌机被击中的对立事件是甲、乙同时没有击中,由此利用对立事件概率计算公式能求出敌机被击中的概率.【解答】解:敌机被击中的对立事件是甲、乙同时没有击中,设A表示“甲击中”,B表示“乙击中”,由已知得P(A)=0.3,P(B)=0.5,∴敌机被击中的概率为:p=1﹣P()P()=1﹣(1﹣0.3)(1﹣0.5)=0.65.故答案为:0.65.13.已知高为H的正三棱锥P-ABC的每个顶点都在半径为R的球O的球面上,若二面角P-AB-C的正切值为4,则______.参考答案:【分析】取线段AB的中点D,点P在平面ABC的射影点M,利用二面角的定义得出为二面角的平面角,于此得出,并在中,由勾股定理,经过计算可得出与的比值。【详解】取线段AB的中点D,设P在底面ABC的射影为M,则,连接CD,PD(图略).设,易证,,则为二面角的平面角,从而,则,.在中,,即,解得,故.故答案为:。【点睛】本题考查二面角的定义,考查多面体的外接球,在处理多面体的外接球时,要确定球心的位置,同时在求解时可引入一些参数去表示相关边长,可简化计算,考查逻辑推理能力,属于中等题。14.两条异面直线a,b所成角为60°,则过一定点P,与直线a,b都成60°角的直线有__________条.参考答案:考点:异面直线的判定.专题:数形结合;空间位置关系与距离;立体几何.分析:先将异面直线a,b平移到点P,结合图形可知,当使直线在面BPE的射影为∠BPE的角平分线时存在2条满足条件,当直线为∠EPD的角平分线时存在1条满足条件,则一共有3条满足条件.解答:解:先将异面直线a,b平移到点P,则∠BPE=60°,∠EPD=120°而∠BPE的角平分线与a和b的所成角为30°,而∠EPD的角平分线与a和b的所成角为60°∵60°>30°,∴直线与a,b所成的角相等且等于60°有且只有3条,使直线在面BPE的射影为∠BPE的角平分线,和直线为∠EPD的角平分线,故答案为:3.点评:本小题主要考查异面直线所成的角、异面直线所成的角的求法,以及射影等知识,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.15.已知数据的平均数,方差,则数据的方差为

参考答案:36略16.函数是幂函数,且当时,f(x)是增函数,则m=__________.参考答案:2由函数是幂函数,且当时,f(x)是增函数可知,,解得:故答案为:17.已知点P是双曲线-=1上的动点,F、F分别是其左、右焦点,O为坐标原点,则的取值范围________________.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知集合,求.参考答案:19.设λ∈R,f(x)=,其中,已知f(x)满足(1)求函数f(x)的单调递增区间;(2)求不等式的解集.参考答案:【考点】两角和与差的正弦函数;平面向量数量积的运算;正弦函数的对称性;余弦函数的图象.【专题】三角函数的求值;三角函数的图像与性质.【分析】(1)利用向量的数量积以及两角和的正弦函数,化简函数的解析式,利用正弦函数的单调性求解即可.(2)直接利用余弦函数的图象与性质,写出不等式的解集即可.【解答】解:(1)f(x)=,其中,=λsinxcosx﹣cos2x+sin2x=…(2分)∵,∴…(3分)∴令,得,∴f(x)的单调递增区间是…(7分)(2)∵,∴∴∴不等式的解集是…(12分)【点评】本题考查向量的数量积以及两角和与差的三角函数,三角函数的单调性的应用,考查计算能力.20.已知函数(1)讨论函数f(x)的单调性;(2)当时,求函数f(x)在区间上的零点个数.参考答案:(1)见解析;(2)见解析【分析】(1)先对函数求导,分别讨论,,即可得出结果;(2)先由(1)得时,函数的最大值,分别讨论,,,即可结合题中条件求出结果.【详解】解:(1),,当时,,当时,,当时,;当时,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)由(1)得,当,即时,函数在内有无零点;当,即时,函数在内有唯一零点,又,所以函数在内有一个零点;当,即时,由于,,,若,即时,,由函数单调性知使得,使得,故此时函数在内有两个零点;若,即时,,且,,由函数的单调性可知在内有唯一的零点,在内没有零点,从而在内只有一个零点综上所述,当时,函数在内有无零点;当时,函数在内有一个零点;当时,函数在内有两个零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论