2016美赛原版奖-优秀已打2016d_第1页
2016美赛原版奖-优秀已打2016d_第2页
2016美赛原版奖-优秀已打2016d_第3页
2016美赛原版奖-优秀已打2016d_第4页
2016美赛原版奖-优秀已打2016d_第5页
免费预览已结束,剩余19页可下载查看

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Forofficeuseonly

TeamControlProblemD

ForofficeuseonlyAbridgetheDistancebetweenHuman—ResearchonSocialInformationInformationcirculationnetworkisascomplicatedasthehumanbrain,whilebrainwithwisdomseekstoexplorethemysteriesoftheinformationcirculationnetwork.,weestablishamodelofinformationcirculationnetwork(ICP).Thenweestablishfivenetworktopologygraphsandqualitativelyyzeevolutionoffiveperiods.Basedonclassicalepidemicmodel,weintroducethesuper-spreader,whichcaneffectivelyacceleratethecirculationofinformationasthecentralnode.Thedifferentialequationsandtheirresultsgiveusreasonablecirculationlaws:thedensityofthespreaderandthesuper-spreaderrapidlyincreaseatthebeginning,thentheyreachakanddeclinerapidly;theignorantdensityshowsarapiddownwardtrendwhiletheimmunedensitygenerallyincreases.Webuildthefuzzycomprehensiveevaluationmodel(NF)tofilterwhatqualifiesasnews.Weproposeaudienceawarenessindex(AAI)toindicatetheinherentvalueofinformation.Thenweusefourgivenexamplestotestthemodel.Undoubtedly,theassassinationofAbrahamLincolnwasqualifiedasnews;andsodoestheimportant’sassassinationtoday.AsforinformationofTaylor’sstyletransition,it esnewstoday,butitmightnotbenewsin1860.Thenweusetheneuralnetworkpredictionmodel(ICNP)topredictthenetworks’relationshipsandcapacities.WegetthenodenumberandthenodedegreeviapreviousdatafromthreestatesinUSA.AndtheresultsofICNPmodelare:inthefifthperiod,nodenumberofNewYorkis22535000,anditsrelativeerroris15.32%;inthefifthperiod,nodedegreeis13533000,anditsrelativeerroris20.58%.SoitvalidatesthereliabilityofICPmodel.Inaround2050,nodenumberofNewYorkis34885000andnodedegreeis23766000.Finally,webuildourmodel(PIINI)consideringtheinterestattenuationmechanismandsocialstrengtheningmechanism.Takingtheinteractionofinformationcirculationnetworkandpublicinterestsintoaccount,weestablishdifferentialequationssimilarly.Anditcomestointeractionlaws:thedensityofthespreaderandnodesinconnectionstaterapidlyincreaseatthebeginning,theyreachapeakandthendeclinerapidly.Theignorantdensityshowsarapiddownwardtrendwhiletheimmunedensitygenerallyincreases. Keyword:InformationCirculationNetwork EpidemicModel BPNeuralNetworksAbridgetheDistancebetweenHuman—ResearchonSocialInformationRestatementofthe JustificationofOur Symbol The Informationcirculationnetworkmodel Themodel Tosolvethe Newsfiltermodel Influentialfactorsofaudience’sawareness Themodel Theprocesstotestthe Informationcirculationnetworkpredictionmodel Influential Themodel Tosolvethe Publicinterestandinformationnetworkinteractionmodel Themodel Tosolvethe Sensitivity Strengthsand Appendix(dataanddataTeam# Page1ofRestatementoftheInformationspreadquicklyintoday’stech-connectedcommunicationsnetwork;sometimesitisduetotheinherentvalueoftheinformationitself,andothertimesitisduetotheinformationfindingitswaytoinfluentialorcentralnetworknodesthataccelerateitsspreadthroughsocialmedia.ExploretheflowofinformationandfilterorfindwhatqualifiesasPredictthecommunicationnetworks’relationshipsandcapacitiesaroundtheyearExplorehowpublicinterestandopinioncanbechangedthroughinformationnetworksintoday’sconnectedworld.Determinehowinformationvalue,people’sinitialopinionandbias,formofthemessageoritssource,andthetopologyorstrengthoftheinformationnetworkinaregion,country,orworldwidecouldbeusedtospreadinformationandinfluencepublicopinion.InterpretationoftheseWeshouldbuildamodeltoindicatehowinformationcirculateinsocialWeshouldfigureoutanimprovedmodeltofilterwhatqualifiesasnewsbasedonmodel.Weshouldpredictpresentnetwork’srelationshipandcapacitytovalidatemodelbyusingourmodel’spredictionability,andpredictfuturenetwork’srelationshipandcapacityinaround2050.Weshouldbuildanothermodeltoexploretheinteractionofpublicinterestandinformationnetwork.Socialinformationcirculationnetworkisaveryactiveresearcharea.Buildingthesocialinformationcirculationnetworkisthehotareaofcomplexnetworkresearch.ThatresearchhasveryimportantvalueforunderstandingthedynamicbehaviorofthePreviousInpreviousysis,mostofmodelsarebasedontheclassicalepidemicmodelSI,SISandSIR,etc.[1,2]TheICmodel[3,4]proposedbyJacobGoldenbergandtheLTmodel[5]proposedbyMarkGranovetterismostwidelystudiedcurrently.AndJaewon迈思数模2018美赛课程表及报名安排 VIP学员无报名费(强制80(建议参加);点评联系辅助报名:750元模拟赛学员:700联系门班课程元;三科398元【限时特惠168-268-368】赛前冲刺20法班课程赛前冲刺课程更新时间为:1116共计20节课赛前冲刺20VIP(入门班课程【限时特568-668-768拟赛+辅助报名(100支付后,请联系下VIP(算法班课程拟赛+辅助报名(100拟赛+辅助报名(100群(比提醒:VIP班学员强制参加模拟赛,其他学员建议参与模拟赛,因为根据国赛模拟赛结果来看,参与模拟赛的学员几乎都了国奖,未参加模拟赛的学员国奖的比例远没有参加模拟赛国奖的比例高!!!联 andotherresearchersproposedalinearinfluencemodel[6]bytheysisof’susers’behaviors.Fromtheaspectofsocialpsychology,themassinformationcirculationprocessisplacedinaenvironmentaffectedbyavarietyofsocialforcesandpsychologicalfactors.Massadescribedtheysisandpredictionofperceiveduserbehaviorbasedontrustframework[7].Jamaliandotherresearchers[8]useTrustWalkermodeltopredictbehaviors’ofusers.JosangA[9]buildausertrustpredictionsystemtodescribethedevelopmentoftrustbetweendifferentusers.Table1 WedonottaketimedelayduringinformationcirculationtwonodesintoICNWethinkthepublicinterestisWedonottakesocialstrengtheningintoWedonotconsiderthedifferencebetweendifferentWethinktheinfluencebetweentwonodeswillnotaffectourNF WethinktheaudienceawarenessistheonlyindicatorofinterestandICNPWedonotconsidersecondaryWethinkthenetworkisuniversalaroundthePIINI WedonotconsidersecondaryJustificationofOurICNDynamicsofepidemicdiseasecaneffectivelyportrayonthecirculationcharacteristicsofcomplexnetwork,whichisanimportantbasisforthecurrentnetworkcirculationdynamics.Super-spreaderplaysanimportantroleintheinformationcirculationnetwork.Onthebasisofclassicalepidemicmodelweintroduceofthesuper-spreaderandestablishdifferentialequationswhichcaneffectivelyportrayinformationcirculationnetwork’scharacteristics.NFNewsisobjectivereportofwhataudiencesareconcernedabout.Theconceptofaudienceawarenessisvague,butwecanqualitativelyyzeaudienceawarenessindexhasapositiveinfluenceoninherentvalueofinformation.Thefuzzycomprehensiveevaluationmodelcancharacterizethetransitionstatebetweennewsandinformation.Therefore,itisappropriatetouseNFmodeltofilterwhatqualifiesasnews.ICNPmodelInformationcirculationnetworkisacomplexandrandomsystem,influencedbymanyfactors.UsingthestatisticalforecastingmodeltopredictmighthavedefectsespeciallywhenthesampledataarenotenoughandwhenhistoricaldataareAndweuseBPneuralnetworktobuildICNPmodel,whichcan ethisPIINIStrengtheningsocialmechanismisanimportantdistinctionbetweentheinformationcirculationandthespreadofdisease.Socialinterestattenuationmechanismisalsosignificantininformationcirculationnetwork.ProposedPIINImodeltakessocialinterestattenuationandsocialstrengtheningintoaccount,soitcanbeeffectivelyandreasonablyreveallawsintheinformationcirculationnetwork.SymbolTherearesomemajorsymbolsappearinthemodel,asshown k kk-1 kk-inodeiandneighborsineighbors.EistheedgesC ClusteringcoefficientrepresentprobabilityofanytwonodesD NNNetworkdensityisasymptomnetwork’s aNkiNNkTheaverageofallnodedegreestheNodedegreeaveragejjNNkiaija.Ni matrixAThedegreeofnodesisthenumberconnectednodes.AndgiveNode connectedanddisconnectedNotes:wewillexplainothersymbolswhenweuseTheInformationcirculationnetworkmodelSocialnetworkisacomplexnetwork,whichiscomposedofsocialindividualsaswellasthesocialrelationshipsbetweenindividualmembers.[10]Intherelatednetworkresearch,researchersusedG(V,E,W)graphtobuildmodel.Visthesetofnetworknodes;EVVisthesetofrelationshipsbetweensocialindividuals;WistheweightofsocialTopologicalpropertiesofnetworkareirrelevantwithsize,location,shandfunctionofnodes.However,theyareonlyrelevantwithnumberofnodesandtheconnectionfeaturesbetweenconnectednodes.Intheresearchofsocialnetworks,directedgraphhasabetterexpressiveabilityandapplicability,soweuseadirectedgraphtocharacterizesocialnetworks.Andbasedonthis,resentthefollowingindices.ThemodelTherearelotsofclassicalepidemicmodels,suchasSI,SIS,SIR,ICandLT.Wetakeintoaccountthecentralnode(suchastheInternet)hashigherspreadingfunctionthanordinaryspreader.Wethenintroducesuper-spreaderstoournetworktoimprovetheSIRmodel.Wedividetheuserintofourparts:ignorant,spreader,super-spreaderandimmune.Andthedefinitionoftheseareasfollows[11]:Table3FourtypeofTypesofTheignoranthasnotreceivedanyinformationfromThespreaderreceivesinformation,thespreaderwillprobablyspreadtheinformationtoneighbors.TheimmunewillnotspreadtheinformationafterreceivingtheThesuper-spreaderisabletoquicklydeliverinformationtomoreγβδSuper-TheγβδSuper-αFig1thepropagationrulesoftheTherulesofinformationcirculationareshownabove.Wecanconcludetherulesasfollows:Ifignorantconnectstoaspreader,theywillturnintospreaderwithaprobabilityβ.Forpublicityandotherreasons,somespreaderswillturnintosuper-spreaderwithaprobabilityα.Aftercontactingwithotherspreaders,thesuper-spreaderwillturnintotheimmunewithprobabilityδ.Aftercontactingwithotherspreaders,immunesorsuper-spreaders,thespreaderwillturnintotheimmunewithaprobabilityγ.TheinformationcirculationnetworkinfiveOnthebasisoftheestablishmentofinformationcirculationnetworkmodel,consideringthecharacteristicsofmodesinformationcirculationinfiveperiods,welistthenetworkcirculationinformationmodelinfiveperiodsasfollows:Table4theinformationcirculationgraphand

Theinformationcirculation

Thenumberofnode,thedegreeofnode,internetdensityandclusteringcoefficientare"Newsproffice"nodeisregardedassuper-spreadersandplaysanimportantroleintheinformationnetwork.Theclosenessofinformationcirculationispoor.Regionallinksbetweenusersarestrong.(4)SpreadingflowissmallandspreadingspeedisSametotheperiod,thenumberofnode,thedegreeofnode,internetdensityandclusteringcoefficientaresmall."Radio"nodeisregardedassuper-spreadersandplaysanimportantroleintheinformationnetwork.(3)Theclosenessofinformationcirculationispoor.Regionallinksbetweenusersdecrease.(4)Comparedwith period,thespreadingflowandspreadingspeedincreasesignally.

Thenumberofnode,andinternetdensityarelarge,whilethedegreeofnodeandtheclusteringcoefficientaresmall."evisionstation"nodeisregardedassuper-spreadersandplaysanimportantroleintheinformationnetwork.Theclosenessofinformationcirculationisbetter.Regionallinksbetweenusersispoor.(4)Comparedwithsecondperiod,thespreadingflowandspreadingspeedincreasesignally.ComparedComparedwiththefourthperiod,thenumberofnode,thedegreeofnode,internetdensityandclusteringcoefficientarelarger.Somenodesininternetareregardedassuper-spreadersandplayanimportantroleintheinformationnetwork.Theclosenessofinformationcirculationiswell.Regionallinksbetweenusersispoor.(4)Comparedwithfourthperiod,thespreadingflowandspreadingspeedincreasesignally.densityandclusteringcoefficientarelarge. Theclosenessofinformationcirculationiswell.Regionallinksbetweenusersispoor.(4)Comparedwiththirdperiod,thespreadingflowandspreadingspeedincreasesignally.WhichnodesdonotenterthenetworkarenotshownintheSolidcirclerepresentsthesuper-spreader,anddottedcirclerepresentstheThedifferentialequationofinformationcirculationBasedonthreecirculationprinciples,webuilddifferentialequationsasdI(t)IdS(t)S(t)I(t)S dJ J S(t)JtIntheseequations,I(t),S(t),J(t)andR(t)respectivelyrepresent,attimet,thedensityoftheunknown,thespreader,thesuper-spreaderandtheimmune.Thedensityoffourtypesofusersmeetstheconditionofnormalization:ItStJtRt1.When0,0,thismodelwillturnintoclassicalSIRmodel.Withtheevolutionofthesystem,whenthenumberofspreadersiszero,theprocessstopsandspreadofnetworkends.AndthenetworkwillonlycontainthosewhohavenotyetreceivedanyTosolvetheWeuse2014bsoftwaretosolvedifferentialequations.Bymeansofnumericalsimulations,thenumberofconfigurednodesis1000inthenetwork,theinitialnumberofspreadersis1.Intheinitialstage,St011000,It09991000,Jt0Rt00,andweassume0.1,0.7,0.5,0.3[17].Fig1showsgeneraltrendsoftypesofnodes’Fig2densitiesofdifferentgroupsintheAccordingtotheysisoffig2,wecanLawone:Spreader’densityrapidincreaseattheinitialstage.Afteritreachesapeak,itdeclinesrapidly,untilthespreaderentersintotheimmunestate.Lawtwo:Theevolutionarytrendofsuper-spreaderslikethatofordinaryspreaders,anditalsoexperiencesanincrease,andthendecreaseuntilitdisappears.However,thecurvechangesgently.Thepeakdensityisalsomuchsmallerthanordinaryspreaders.Thisshowsthatintheonlinesocialnetworks,super-spreadersareasmallnumberof"starnodes."Lawthree:Ignorantdensityshowsarapiddownwardtrend.Anditeventuallysettlestoanon-zerovalue.Andthatreflectstheinformationcirculation’sbreadthanddeptharelimitedanditisimpossibletocoverallusers.Lawfour:Thetrendofimmunedensityisoppositetothatoftheignorant.Itexperiencesarapidincreasestageandthengraduallystabilizestoavaluecloseto1.Rapidincreaseoftheimmunedensityismainlybecausespreadersandsuper-spreaderscontinueturningintotheimmunestate.Andtheincreasingtrendslowsbecausethereisnonewspreader.Lawfive:Itisworthnotingthat,wheninformationcirculationstops,thedensityofthespreaderandthesuper-spreaderareequaltozero,butthedensityoftheignorantandtheimmunearenotzero.Itindicatesthatthereareuserswhodoesnotreceivetheinformationinthenetwork.Thesizeofinformationcirculationhasacertainlimit,anditisimpossibleto“infect”allusers.NewsfiltermodelNewsisdefinedasareportforwhataudiencesfocus[12].Thedogsbitehumanbeingsisnormal,whilethathumanbeingsbitedogswill enews.Thereasoniswefocusmoreonhumanbeingsbitingdogs.Sointhelightofaudience’sawareness,wedefineaudience’sawarenessindex(AAI).BydeterminingthevalueofAAI,wecanfilterwhatqualifiesasnews.Influentialfactorsofaudience’sawarenessThenumberofaudiences,thepoliticalstatusofaudiencesandtheinfluenceofinformationhaveaninfluenceonAAI[13].AndtheysisofthesefactorsareasThenumberofThenumberofaudiencesisthenumberof swhoareconcernedaboutthisinformation.Themorethenumberoftheaudiencesis,thehighertheAAIis.ThepoliticalstatusofHigherpoliticalstatusofaudiences,themoreitcanarousetheaudience'sattention,soAAIwillbehigher.TheinfluenceofThehighertheinfluenceofnews,thehigherthevalueofAccordingtoforegoingysis,therearepositivecorrelationsbetweentheAAIandthesefactors.ThemodelInordertocalculate,webuildthefuzzycomprehensiveevaluationmodel.,weshoulddetermineindexweightmatrix.Thenweimprovethemaxminalgorithmandtheprincipalof ummembershipdegreeamongevaluationresults.Webuildthesetoffactors,thesetofevaluation,membershipfunctionandthesetofweight[13].Last,wecomprehensivelyevaluateAAI.Step1:DeterminethesetofevaluationP={InformationtobeStep2:BuildthesetofevaluationUu1,u2,u1,u2,u3isthenumberofaudiences,thepoliticalstatusofaudiencesandtheinfluenceofnewsrespectively.Step3:DeterminetheuniverseofevaluationBuildasetofevaluationv,eachlevelcancorrespondtoafuzzysubsetV=v1,v2,Step4:CalculateindexUsepairedcomparisonmethodand1-9comparativescaletocalculateindexweight,wehaveA=[0.4,0.3,0.3]Step5:CalculatefuzzyrelationshipmatrixEvaluateU,andthenfigureoutthemembershipdegree.FinallygetthefuzzyrelationshipmatrixR.Step6:CalculatethevectoroffuzzyevaluationresultsUsetheweightedaverageoffuzzyarithmeticoperatorsM,todetermineindexweightmatrixAandfuzzyrelationshipmatrixR,andtheformulais: bi(airij)min1,airij,j1,

SynthesizingtheAandRwillgetthevectoroffuzzyevaluationresultsB.Accordingtothedefinition,ifBs>Bt,thevalueofinformationsishigherthanthatofinformationt.ThevalueofvectorBisAAI.Step7:CalculatethevalueofiWeuseCAAI=(B'[3,2,1])3toindicatethevalueofiTheprocesstotesttheWeusethegivenfourexamplestotestourInformationa:country-turned-popsingerTaylorSwift’spossibleengagementInformationb:country-turned-popsingerTaylorSwift’spossibleengagementinInformationc:an wasassassinatedInformationd:assassinationofUSAbrahamLincolninDuetospacelimitations,thesolutionprocessomitssteps1-4.Andaccordingtostep5,wegettheevaluationmatrixes: R=

,R

0.1 0.1 0.4 a

b 0.1 0.4

R= c

,Rd

0.1 0 Wecalculatetheresultofevaluationvector,andweBa[0.30,0.54Thenaccordingtostep7,we

Bb[0.10,0.46,0.44]Bd[0.89,0.07,CAAIa=0.71,CAAIb=0.55,CAAIc=0.87,CAAIdAccordingtopreviousysis,thegreatervalueofCAAI,thegreaternumberofaudienceswillbeconcernedaboutgiveninformation.Sotherearemorereasonstoexplainwhythisinformationisqualifiedasnews.Inthisfourexamples,thattheUSwasassassinatedundoubtedlybecamenews;andsodoestheimportantoccurredtoday.AsforinformationofTaylortransitionstyle,itisstillisanewstoday,butifithappened1870,perhapsitwillnotbeconcernedabout.InformationcirculationnetworkpredictionmodelInformationcirculationnetworkisacomplexandrandomsystem,influencedbymanyfactors.Usingthestatisticalforecastingmodeltopredictmighthavedefectsespeciallywhenthesampledataarenotenoughandwhenhistoricaldataarevolatile.Therefore,weimprovetheICNmodelbyaddingBPneuralnetworkpredictionmodeltopreviousmodeltopredictinformationcirculationnetwork’snodenumberandnodeInfluentialComprehensiveysisoffactorsthatinfluencethespreadofinformationnetworksisaprerequisitetoimproveICNmodelbyusingitsabilityofprediction.Basedontherealityofsociallifeandthecomplexityoffindingdata,wewillselectthefollowingmainfactors:LevelofregionaleconomicThelevelofregionaleconomicdevelopmentismeasuredbyregionalGDP.Thehigherthelevel,themorebeneficialtoinformationcirculation.LevelofregionalcommunicationThelevelofregionalcommunicationdevelopmentismeasuredbyinformationcommunicationtechnologydevelopmentindex(IDI)[15].ThelargertheIDI,themorebeneficialtoinformationcirculation.LevelofregionaleducationThelevelofregionaleducationdevelopmentismeasuredbyeducationindexThelargertheEI,themorebeneficialtoinformationThemodelAccordingtotheforegoingICNmodel,wewillbuildICNPmodeltopredictthenumberofnodeandthedegreeofnode.Thenumberofnodedeterminethesizeofnetwork,andthedegreeofnodedeterminethecapacityoftheSimilartoteralneuralnetworkmodel,ourICNPmodel’spredictionprocessisasfollows:Fig3ICNPmodel’spredictionDataInthisp r,dataarenormalizedbyusing umandminimumnormalizationmethod.Thedatanormalizedformulais:X XX

XmaxXiDeterminetheinputnumberofAccordingtoHurvich’sstudy,whensampledataisless,ifusingACIcriteria,therewillbegreatestimationbias.So,basedonACIcriteria,HurvichproposedAICCcriteriaspecificallyapplicabletosmallsamples.Andtheformulais:Amongthe

AICC(m)NlnE NNm

N N20~m

~N,N40~

lnN,N100~TosolvetheCollectWecollectfrominternet,andcollectdatainthreestates:California(CA),Texas(TX)andNewYork(NY)inUSA.AndthesethreestateshavetopthreelargestpopulationamongfiftystatesinUSA.Thereasonwechoosethesethreestatesarebecausethesedataareeasiertofindandthesedatasamplesarelarger.ThedataanddatasourceareshownintheWeusedataexcludingthedatafromNewYorkatfifthperiod.AndthenweusetheICNPmodeltopredictthedatainNewYorkatfifthperiodandcomparethesedatawithpresentdatatovalidateourICNmodel.Table5duringthesampleperiodFromICNFrompredictRelativeerrorNumbernode(Degree Predictfuturenetwork’srelationshipsandcapacitiesinTable6duringthesampleperiodICNPNumberof)Degreeof PublicinterestandinformationnetworkinteractionmodelIntheprocessofsocialinformationcirculationnetworks,thecirculationofinformationaffectsindividuals’preferences.Wealsothinkthatindividuals’differentpreferencesaffectsinformationcirculationnetworks.Thatissameaswhatquestionsaidthatpublicinterestcanbechangedthroughinformationnetworks.Intheme informationvalue,people’sinitialopinionandbias,formofthemessageoritssource,andthetopologyorstrengthoftheinformationnetworkinaregion,country,orworldwidecouldinfluencepublicopinion.ThemodelInformationcirculationisintrinsicallydifferentfromthecharacteristicsofthespreadofdisease[17].Anditscharacteristicsshouldconsideravarietyoffactors.Weconsideronlyconsidertwofactors:publicinterestdecayandsocialstrengtheningeffectBasedonthesetwofactors,webuildPIINImodeltorevealtheinteractionofpublicinterestandinformationnetwork.PublicinterestattenuationThepublicinterestdecaymechanismreferstothepublicinterestdecreaseswhenthetimesofreceivingsameinformationincrease[18].Ifusersrepeatedlyreceivedthesameinformationfromneighboringnodes,userswillacquiesceininformationbeingwidelydisseminated.Thenthereexistsattenuationcoefficient[19]whichindicatesuserswillgraduallydecreasetheirbehaviorofcirculatinginformation.Therefore,weintroduceasaturationfunctiontorepresentpublicinterestattenuationcoefficient:(m)a Andaisthe umattenuationrate,bistheadjustablecoefficient,theispublicinterestattenuationcoefficientandmisthenumberofconnectedusers.Thesaturationisanon-linearincreasingfunction.Whenthe umattenuationratea=1,b=1adjustablecoefficient,asmincreasesandnonlineargrowth,indicatingthatthelossofinterestandforwardedintoaconnectedstatemoreandmoreusers.Whena=1,b=1,whenmandincreases,thenumberofuserslosinginterestincreases.Asshowninfig4.Fig4themechanismofinterestSocialstrengtheningSocialstrengtheninghavenonlinearcumulativeeffectwhichhaveasignificanteffectonpublicinterest[20].Becauseofthismechanism,anindividual,userswillbeaffectedbyneighbors’cumulativeeffectsbeforetheyadoptreceivedopinions[21].Inourpr,wedefinethesocialstrengtheningmechanismas:theprobabilityofauser’sbehavior(includingtheacceptanceanddisseminationofinformation)willdecreasewhilestrengtheningfacteneratedfromneighbors’discouragement.Thelargerthestrengtheningfactor,thelowertheprobabilityofauser’sbehavior(includingtheacceptanceanddisseminationofinformation).Weusethefollowingnonlinearfunctiontoexplainthesocialstrengtheningmechanism.(n)

indicatestheprobabilityofauser’sbehavior(includingtheacceptanceanddisseminationofinformation),nindicatesthenumberofconnectednode,isthestrengtheningfactor,01.Fig5thesocialstrengtheningeffectchangedwithAsfig5shows,thelargervalueof,thelargervalueofn.Intheme ,thelargervalueof,thesmallervalueof.Fig6thesocialstrengtheningeffectchangedwithAsfig6shows,whentheprobabilityisconstant,thevalueofwilldecreasewhenthevalueincreases.Itshowsthatbyincreasingtheeffectofsocialstrengthening,moreuserswillstayintheunconnectedstate.AndthereforethenumberofspreaderswillImprovetheinformationcirculationThestateofconnectiondefinedasastatethatusershavealreadyreceivedinformationbuttheyarenotsurewhethertospreadtheinformation.Andtheinformationcirculationrulesareasfollows:Ifignorantisconcernedaboutreceivedinformation,theignorantwillturnintospreaderwithaprobabilityβ;ifignorantisnotconcernedaboutreceivedinformation,thewillturnintotheimmunewithaprobabilityγ.Withtimesofcirculationincreasing,thespreaderwillgraduallyloseinterestintransferringinformationtoothersandturnintotheimmunewithaprobabilityofInterestInterestattenuationγβξζθFig7thecirculationrulesofPIINIThedifferentialequationsinPIINII(t、S(t、C(tandR(t)indicatethedensityofignorantnodesspreadernodesinconnectionstateandimmunenodeswhennodedegreeiskattimet.Theequationsareshownbelow:dI(t)IdS(t)I(t)()S(t)S(t)

S(t) dR(t)()S When0,0,0,thismodelwilldegeneratetoclassicalmodelTosolvetheWeuse2014bsoftwaretosolvedifferentialequations.Bymeansofnumericalsimulations,thenumberofconfigurednodesis1000inthenetwork,theinitialnumberofspreadersis1.AndSt011000,It09991000,Jt0Rt00and 0.1,0.7,0.5,0.3,0.3,0.15[17].Fig8showsgeneraltrendsoffourtypesofnodes’density.Fig8densitiesofdifferentgroupsintheAccordingtotheysisoffig8,wecanLawone:Spreader’densityrapidincreaseattheinitialstage.Afteritreachesapeak,itdeclinesrapidly,untilthespreaderentersintotheimmunestate.Lawtwo:Theevolutionarytrendnodesinconnectionstaikethatofordinaryspreaders,anditalsoexperiencesanincrease,andthendecreaseuntilitdisappears.However,thecurvechangesgently.Thepeakdensityisalsomuchsmallerthanordinaryspreaders.Thisindicatesthatintoday’sonlinesocialnetworknodesintheconnectionstateareasmallpartofallnodes.Andthisstateofnodewillchangequicklyintothespreadingstate.Lawthree:Ignorantdensityshowsarapiddownwardtrend.Anditeventuallysettlestoanon-zerovalue.Andthatreflectstheinformationcirculation’sbreadthanddeptharelimitedanditisimpossibletocoverallusers.Lawfour:Thetrend

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论