吉林九台区加工河中学2022年九年级数学上册期末调研模拟试题含解析_第1页
吉林九台区加工河中学2022年九年级数学上册期末调研模拟试题含解析_第2页
吉林九台区加工河中学2022年九年级数学上册期末调研模拟试题含解析_第3页
吉林九台区加工河中学2022年九年级数学上册期末调研模拟试题含解析_第4页
吉林九台区加工河中学2022年九年级数学上册期末调研模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各点中,在反比例函数图象上的点是A. B. C. D.2.如图,在半径为的中,弦与交于点,,,则的长是()A. B. C. D.3.已知是关于的一元二次方程的解,则等于()A.1 B.-2 C.-1 D.24.如图,在△ABC中,∠ACB=90°,AC=3,BC=1.将△ABC绕点A逆时针旋转,使点C的对应点C'在线段AB上.点B'是点B的对应点,连接B'B,则线段B'B的长为()A.2 B.3 C.1 D.5.如图,是正方形与正六边形的外接圆.则正方形与正六边形的周长之比为()A. B. C. D.6.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤168.一元二次方程x(3x+2)=6(3x+2)的解是()A.x=6 B.x=﹣ C.x1=6,x2=﹣ D.x1=﹣6,x2=9.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为().A.4 B.6 C.8 D.1210.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y3二、填空题(每小题3分,共24分)11.抛物线y=﹣2x2+3x﹣7与y轴的交点坐标为_____.12.若代数式4x2-2x-5与2x2+1的值互为相反数,则x的值是____.13.矩形的对角线长13,一边长为5,则它的面积为_____.14.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.15.一元二次方程的根是_____.16.如图,在⊙O中,半径OC与弦AN垂直于点D,且AB=16,OC=10,则CD的长是_____.17.如图,是的直径,点和点是上位于直径两侧的点,连结,,,,若的半径是,,则的值是_____________.18.小亮和他弟弟在阳光下散步,小亮的身高为米,他的影子长米.若此时他的弟弟的影子长为米,则弟弟的身高为________米.三、解答题(共66分)19.(10分)2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?20.(6分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.21.(6分)作出函数y=2x2的图象,并根据图象回答下列问题:(1)列表:x……y……(2)在下面给出的正方形网格中建立适当的平面直角坐标系,描出列表中的各点,并画出函数y=2x2的图象:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是(直接写出结论).22.(8分)如图,抛物线与轴交于、两点,与轴交于点.(1)求点、、的坐标;(2)若点在轴的上方,以、、为顶点的三角形与全等,平移这条抛物线,使平移后的抛物线经过点与点,请你写出平移过程,并说明理由。23.(8分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出号球的概率相同;②有放回的连续摸次,则一定摸出号球两次;③有放回的连续摸次,则摸出四个球标号数字之和可能是.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)24.(8分)如图,已知∠BAC=30°,把△ABC绕着点A顺时针旋转到△ADE的位置,使得点D,A,C在同一直线上.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状;(3)求∠AEC的度数.25.(10分)随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比18204合计请你根据以上信息,解答下列问题:(1)______,______,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.26.(10分)某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2000元.设矩形一边长为x,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?

参考答案一、选择题(每小题3分,共30分)1、B【分析】把各点的坐标代入解析式,若成立,就在函数图象上.即满足xy=2.【详解】只有选项B:-1×(-2)=2,所以,其他选项都不符合条件.故选B【点睛】本题考核知识点:反比例函数的意义.解题关键点:理解反比例函数的意义.2、C【分析】过点作于点,于,连接,由垂径定理得出,得出,由勾股定理得出,证出是等腰直角三角形,得出,求出,由直角三角形的性质得出,由勾股定理得出,即可得出答案.【详解】解:过点作于点,于,连接,如图所示:则,∴,在中,,∴,∴是等腰直角三角形,∴,,∵,∴,∴,在中,,∴;故选C.【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.3、C【分析】方程的解就是能使方程的左右两边相等的未知数的值,因而把x=-1代入方程就得到一个关于m+n的方程,就可以求出m+n的值.【详解】将x=1代入方程式得1+m+n=0,

解得m+n=-1.

故选:C.【点睛】此题考查一元二次方程的解,解题关键在于把求未知系数的问题转化为解方程的问题.4、D【分析】先由勾股定理求出AB,然后由旋转的性质,得到,,得到,即可求出.【详解】解:在△ABC中,∠ACB=90°,AC=3,BC=1.∴,由旋转的性质,得,,,∴,在中,由勾股定理,得;故选:D.【点睛】本题考查了旋转的性质,勾股定理解直角三角形,解题的关键是熟练掌握旋转的性质和勾股定理,正确求出边的长度.5、A【解析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出周长之间的关系;【详解】设此圆的半径为R,

则它的内接正方形的边长为,

它的内接正六边形的边长为R,

内接正方形和外切正六边形的边长比为R:R=:1.正方形与正六边形的周长之比=:6=

故答案选:A;【点睛】考查了正多边形和圆,解决圆的相关问题一定要结合图形,掌握基本的图形变换.找出内接正方形与内接正六边形的边长关系,是解决问题的关键.6、B【解析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【点睛】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.7、C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.8、C【分析】根据因式分解法解一元二次方程即可求出答案.【详解】解:∵x(3x+2)=6(3x+2),∴(x﹣6)(3x+2)=0,∴x=6或x=,故选:C.【点睛】本题主要考查因式分解法解一元二次方程,掌握因式分解法是解题的关键.9、A【解析】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°,∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定义).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半).∴⊙O的半径4.故选A.10、C【解析】将x的值代入函数解析式中求出函数值y即可判断.【详解】当x=-3时,y1=1,

当x=-1时,y2=3,

当x=1时,y3=-3,

∴y3<y1<y2

故选:C.【点睛】考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题.二、填空题(每小题3分,共24分)11、(0,﹣7)【分析】根据题意得出,然后求出y的值,即可以得到与y轴的交点坐标.【详解】令,得,故与y轴的交点坐标是:(0,﹣7).故答案为:(0,﹣7).【点睛】本题考查了抛物线与y轴的交点坐标问题,掌握与y轴的交点坐标的特点()是解题的关键.12、1或-【解析】由题意得:4x2-2x-5+2x2+1=0,解得:x=1或x=-,故答案为:1或-.13、1【分析】先运用勾股定理求出另一条边,再运用矩形面积公式求出它的面积.【详解】∵对角线长为13,一边长为5,∴另一条边长==12,∴S矩形=12×5=1;故答案为:1.【点睛】本题考查了矩形的性质以及勾股定理,本题关键是运用勾股定理求出另一条边.14、【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x,只需求出BC即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴=,∴=解得x=,∴阴影部分面积为:S△ABC=××1=,故答案为:.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.15、x1=1,x2=2.【分析】整体移项后,利用因式分解法进行求解即可得.【详解】x(x-2)-(x-2)=0,,x-1=0或x-2=0,所以x1=1,x2=2,故答案为x1=1,x2=2.【点睛】本题考查了解一元二次方程——因式分解法,根据方程的特点熟练选择恰当的方法进行求解是关键.16、4【解析】根据垂径定理以及勾股定理即可求答案.【详解】连接OA,设CD=x,∵OA=OC=10,∴OD=10﹣x,∵OC⊥AB,∴由垂径定理可知:AB=16,由勾股定理可知:102=82+(10﹣x)2∴x=4,∴CD=4,故答案为:4【点睛】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.17、【分析】根据题意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【详解】解:∵是的直径,∴∠ADB=90°∴∠ACD=∠ABD∵的半径是,,∴故答案为:【点睛】本题考查的是锐角三角函数值.18、1.4【解析】∵同一时刻物高与影长成正比例,

∴1.75:2=弟弟的身高:1.6,

∴弟弟的身高为1.4米.故答案是:1.4.三、解答题(共66分)19、(1)该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为20%.(2)2019年该贫困户的家庭年人均纯收入能达到4200元.【分析】(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,根据该该贫困户2016年及2018年家庭年人均纯收入,即可得出关于的一元二次方程,解之取其中正值即可得出结论;(2)根据2019年该贫困户的家庭年人均纯收入=2018年该贫困户的家庭年人均纯收入×(1+增长率),可求出2019年该贫困户的家庭年人均纯收入,再与4200比较后即可得出结论.【详解】解:(1)设该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为x,依题意,得:解得答:该贫困户2016年到2018年家庭年人均纯收入的年平均增长率为.(2),答:2019年该贫困户的家庭年人均纯收入能达到4200元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.20、(1)BD′=AC′,∠AMB=α,见解析;(2)AC′=kBD′,∠AMB=α,见解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通过证明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根据三角形内角和定理求出∠AMB=∠AOB=∠COD=α;(2)依据(1)的思路证明△BOD′∽△AOC′,得到AC′=kBD′,设BD′与OA相交于点N,由相似证得∠BNO=∠ANM,再根据三角形内角和求出∠AMB=α;(3)先利用等腰梯形的性质OA=OD,OB=OC,再利用旋转证得,由此证明△≌△,得到BD′=AC′及对应角的等量关系,由此证得∠AMB=α不成立.【详解】解:(1)AC′=BD′,∠AMB=α,证明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,综上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,证明:∵在平行四边形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∵△BOD′∽△AOC′,设BD′与OA相交于点N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,综上所述,AC′=kBD′,∠AMB=α,(3)∵在等腰梯形ABCD中,OA=OD,OB=OC,由旋转得:,∴,即,∴△≌△,∴AC′=BD′,,设BD′与OA相交于点N,∵∠ANB=+∠AMB=,,∴,∴AC′=BD′成立,∠AMB=α不成立.【点睛】此题是变化类图形问题,根据变化的图形找到共性证明三角形全等,由此得到对应边相等,对应角相等,在(3)中,对应角的位置发生变化,故而角度值发生了变化.21、(1)见解析;(2)见解析;(3)【分析】(1)根据函数的解析式,取x,y的值,即可.(2)描点、连线,画出的函数图象即可;(3)结合函数图象即可求解.【详解】(1)列表:x…﹣2﹣1012…y…82028…(2)画出函数y=2x2的图象如图:(3)观察所画函数的图象,当﹣1<x<2时,y的取值范围是,故答案为:.22、(1),,;(2),.理由见解析.【分析】(1)令中y=0,求出点A、B的坐标,令x=0即可求出点C的坐标;(2)分两种全等情况求出点D的坐标,再设平移后的解析式,将点B、D的坐标代入即可求出解析式,由平移前的解析式根据顶点式的数值变化得到平移的方向与距离.【详解】(1)令中y=0,得,解得:,∴,.当中x=0时,y=-3,∴.(2)当△ABD1≌△ABC时,∵,∴由轴对称得D1(0,3),设平移后的函数解析式为,将点B、D1的坐标代入,得,解得,∴平移后的解析式为,∵平移前的解析式为,∴将向右平移3个单位,再向上3个单位得到;当△ABD2≌△BAC时,即△ABD2≌△BAD1,作D2H⊥AB,∴AH=OB=1,D2H=OD1=3,∴OH=OA-AH=3-1=2,∴D2(-2,3),设平移后的解析式为,将点B、D2的坐标代入得,解得,∴平移后的函数解析式为,∵平移前的解析式为,∴将向右平移1个单位,再向上平移3个单位得到.【点睛】此题考查二次函数图象与坐标轴交点的求法,函数图象平移的规律,求图象平移规律时需先求得函数的解析式,将平移前后的解析式都化为顶点式,根据顶点式中h、k的变化确定平移的方向与距离.23、(1)①③;(2)【分析】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;(2)列表得出所有等可能的情况数,找出两球标号数字是一奇一偶的情况数,即可求出所求的概率.【详解】(1)①摸一次,1号与5号球摸出概率相同,正确;②有放回的连续摸10次,不一定摸出2号球,错误;③有放回的连续摸4次,若4次均摸出5号球:5+5+5+5=20,则摸出四个球标号数字之和可能是20,正确;故答案为:①③;(2)列表如下:123451﹣﹣﹣(1,2)(1,3)(1,4)(1,5)2(2,1)﹣﹣﹣(2,3)(2,4)(2,5)3(3,1)(3,2)﹣﹣﹣(3,4)(3,5)4(4,1)(4,2)(4,3)﹣﹣﹣(4,5)5(5,1)(5,2)(5,3)(5,4)﹣﹣﹣所有等可能的情况有20种,其中数字是一奇一偶的情况有12种,则P(一奇一偶)=.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24、(1)150°;(2)详见解析;(3)15°【分析】(1)根据旋转的性质,利用补角性质即可解题;(2)根据旋转后的对应边相等即可解题;(3)利用外角性质即可解题.【详解】解:(1)∵点D,A,C在同一直线上,∴∠BAD=180°-∠BAC=180°-30°=150°,∴△ABC旋转了150°;(2)根据旋转的性质,可知AC=AE,∴△AEC是等腰三角形;(3)根据旋转的性质可知,∠CAE=∠BAD=150°,AC=AE,∴∠AEC=∠ACE=(180°-∠CAE)÷2=(180°-150°)÷2=15°.【点睛】本题考查了旋转变换的性质,理解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论