版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,其中为自然对数的底数,若存在实数,使成立,则实数的值为()A. B. C. D.2.设a,b都是不等于1的正数,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.已知复数,若,则的值为()A.1 B. C. D.4.已知直线过圆的圆心,则的最小值为()A.1 B.2 C.3 D.45.运行如图所示的程序框图,若输出的值为300,则判断框中可以填()A. B. C. D.6.已知非零向量满足,,且与的夹角为,则()A.6 B. C. D.37.函数()的图象的大致形状是()A. B. C. D.8.在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是()A. B. C. D.9.点为的三条中线的交点,且,,则的值为()A. B. C. D.10.若、满足约束条件,则的最大值为()A. B. C. D.11.在很多地铁的车厢里,顶部的扶手是一根漂亮的弯管,如下图所示.将弯管形状近似地看成是圆弧,已知弯管向外的最大突出(图中)有,跨接了6个坐位的宽度(),每个座位宽度为,估计弯管的长度,下面的结果中最接近真实值的是()A. B. C. D.12.已知随机变量服从正态分布,且,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.14.在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.15.运行下面的算法伪代码,输出的结果为_____.16.记为数列的前项和,若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在中,角,,的对边分别为,,,的面积为.(1)求证:;(2)若,求的值.18.(12分)已知.(1)解不等式;(2)若均为正数,且,求的最小值.19.(12分)等比数列中,.(Ⅰ)求的通项公式;(Ⅱ)记为的前项和.若,求.20.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.21.(12分)的内角所对的边分别是,且,.(1)求;(2)若边上的中线,求的面积.22.(10分)在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρcos2θ=4asinθ (a>0),直线l的参数方程为x=-2+22t,y=-1+(I)写出曲线C的直角坐标方程和直线l的普通方程(不要求具体过程);(II)设P(-2,-1),若|PM|,|MN|,|PN|成等比数列,求a的值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是减函数,(﹣1,+∞)上是增函数,故当x=﹣1时,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(当且仅当ex﹣a=4ea﹣x,即x=a+ln1时,等号成立);故f(x)﹣g(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故选:A.2.C【答案解析】
根据对数函数以及指数函数的性质求解a,b的范围,再利用充分必要条件的定义判断即可.【题目详解】由“”,得,得或或,即或或,由,得,故“”是“”的必要不充分条件,故选C.【答案点睛】本题考查必要条件、充分条件及充分必要条件的判断方法,考查指数,对数不等式的解法,是基础题.3.D【答案解析】由复数模的定义可得:,求解关于实数的方程可得:.本题选择D选项.4.D【答案解析】
圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值.【题目详解】圆的圆心为,由题意可得,即,,,则,当且仅当且即时取等号,故选:.【答案点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.5.B【答案解析】
由,则输出为300,即可得出判断框的答案【题目详解】由,则输出的值为300,,故判断框中应填?故选:.【答案点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.6.D【答案解析】
利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【题目详解】解:非零向量,满足,可知两个向量垂直,,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.故选:.【答案点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.7.C【答案解析】
对x分类讨论,去掉绝对值,即可作出图象.【题目详解】故选C.【答案点睛】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题.8.A【答案解析】
由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【题目详解】解:∵复数z=i(i为虚数单位)在复平面中对应点Z(0,1),
∴=(0,1),将绕原点O逆时针旋转得到,
设=(a,b),,则,即,
又,解得:,∴,对应复数为.故选:A.【答案点睛】本题考查复数的代数表示法及其几何意义,是基础题.9.B【答案解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【题目详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【答案点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.10.C【答案解析】
作出不等式组所表示的可行域,平移直线,找出直线在轴上的截距最大时对应的最优解,代入目标函数计算即可.【题目详解】作出满足约束条件的可行域如图阴影部分(包括边界)所示.由,得,平移直线,当直线经过点时,该直线在轴上的截距最大,此时取最大值,即.故选:C.【答案点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.11.B【答案解析】
为弯管,为6个座位的宽度,利用勾股定理求出弧所在圆的半径为,从而可得弧所对的圆心角,再利用弧长公式即可求解.【题目详解】如图所示,为弯管,为6个座位的宽度,则设弧所在圆的半径为,则解得可以近似地认为,即于是,长所以是最接近的,其中选项A的长度比还小,不可能,因此只能选B,260或者由,所以弧长.故选:B【答案点睛】本题考查了弧长公式,需熟记公式,考查了学生的分析问题的能力,属于基础题.12.C【答案解析】
根据在关于对称的区间上概率相等的性质求解.【题目详解】,,,.故选:C.【答案点睛】本题考查正态分布的应用.掌握正态曲线的性质是解题基础.随机变量服从正态分布,则.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
求出抛物线的焦点坐标,代入圆的方程,求出的值,再求出准线方程,利用点到直线的距离公式,求出弦心距,利用勾股定理可以求出弦长的一半,进而求出弦长.【题目详解】抛物线E:的准线为,焦点为(0,1),把焦点的坐标代入圆的方程中,得,所以圆心的坐标为,半径为5,则圆心到准线的距离为1,所以弦长.【答案点睛】本题考查了抛物线的准线、圆的弦长公式.14.9【答案解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15.【答案解析】
模拟程序的运行过程知该程序运行后计算并输出的值,用裂项相消法求和即可.【题目详解】模拟程序的运行过程知,该程序运行后执行:.故答案为:【答案点睛】本题考查算法语句中的循环语句和裂项相消法求和;掌握循环体执行的次数是求解本题的关键;属于基础题.16.-254【答案解析】
利用代入即可得到,即是等比数列,再利用等比数列的通项公式计算即可.【题目详解】由已知,得,即,所以又,即,,所以是以-4为首项,2为公比的等比数列,所以,即,所以。故答案为:【答案点睛】本题考查已知与的关系求,考查学生的数学运算求解能力,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2).【答案解析】
(1)利用,利用正弦定理,化简即可证明(2)利用(1),得到当时,,得出,得出,然后可得【题目详解】证明:(1)据题意,得,∴,∴.又∵,∴,∴.解:(2)由(1)求解知,.∴当时,.又,∴,∴,∴.【答案点睛】本题考查正弦与余弦定理的应用,属于基础题18.(1);(2)【答案解析】
(1)利用零点分段讨论法可求不等式的解.(2)利用柯西不等式可求的最小值.【题目详解】(1),由得或或,解得.(2),所以,由柯西不等式得:所以,即(当且仅当时取“=”).所以的最小值为.【答案点睛】本题考查绝对值不等式的解法以及利用柯西不等式求最值.解绝对值不等式的基本方法有零点分段讨论法、图象法、平方法等,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图象法求解时注意图象的正确刻画.利用柯西不等式求最值时注意把原代数式配成平方和的乘积形式,本题属于中档题.19.(Ⅰ)或(Ⅱ)12【答案解析】
(1)先设数列的公比为,根据题中条件求出公比,即可得出通项公式;(2)根据(1)的结果,由等比数列的求和公式,即可求出结果.【题目详解】(1)设数列的公比为,,,或.(2)时,,解得;时,,无正整数解;综上所述.【答案点睛】本题主要考查等比数列,熟记等比数列的通项公式与求和公式即可,属于基础题型.20.(1)(2)证明见解析【答案解析】
(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【题目详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,,设的方程为,与联立消去得,,同理,直线的斜率=切线的斜率,由,即与互补.【答案点睛】本题考查直线与抛物线的位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题.21.(1),(2)【答案解析】
(1)先由正弦定理,得到,进而可得,再由,即可得出结果;(2)先由余弦定理得,,再根据题中数据,可得,从而可求出,得到,进而可求出结果.【题目详解】(1)由正弦定理得,所以,因为,所以,即,所以,又因为,所以,.(2)在和中,由余弦定理得,.因为,,,,又因为,即,所以,所以,又因为,所以.所以的面积.【答案点睛】本题主要考查解三角形,灵活运用正弦定理和余弦定理即可,属于常考题型.22.(I)x2=4aya>0,x-y+1=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 室内装修安全合同协议2026年规定
- 2026年个人维修服务合同协议
- 2026年产品用户体验评估合同
- 2026年数码印刷服务合同
- 软件外包合同协议2026
- 2026年科技园区孵化合作合同协议
- 2026年在线视频广告合作合同
- 2026年书法兴趣班合同
- 2026年提单运输保险合同协议
- 2026年钢材销售返利合同
- 落地式钢管脚手架专项施工方案
- 2025年母子公司间投资合同范本
- 2026中央广播电视总台招聘参考笔试题库及答案解析
- 班玛县公安局招聘警务辅助人员考试重点题库及答案解析
- 2026年电厂运行副值岗位面试题及答案
- 家校沟通的技巧与途径定稿讲课讲稿
- 实验室质控考核管理
- 雨课堂学堂在线学堂云《明清词研究导论(江苏师大 )》单元测试考核答案
- 2025年度中国铁路沈阳局集团有限公司招聘高校毕业生3391人(二)(公共基础知识)测试题附答案解析
- 软件团队年终总结
- 安徽开放大学2025年秋《个人理财》平时作业答案期末考试答案
评论
0/150
提交评论