




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(1)质点速度和加速度随时间变化关系(3)轨迹方程已知一质点运动方程求例(2)t=2s时,求(2)当t=2s时(3)轨迹方程为解(1)一旦求分量,一定是标量!!!(1)质点速度和加速度随时间变化关系(3)轨迹方程已知一1第二章机械能守恒定律势能:由物体间的相互作用和相对位置决定的能量研究对象是两个或两个以上的质点或物体组成的系统保守力物体在保守力的作用下,沿任意闭合路径绕行一周所作的功恒等于零,即保守力做的功只于始末位置(相对)有关由相对位置唯一决定的能量描述:势能第二章机械能守恒定律势能:由物体间的相互作用和相对位置2质点的角动量:位置矢量,由参考点指向质点,决定于参考点的选取角动量是描述质点的运动方向相对于参考点的变化或物体的转动特征的物理量pxyzO))力矩定义:位置矢量,由参考点指向质点,决定于参考点的选取。:作用于质点的力力对点的力矩:yxzo质点的角动量:位置矢量,由参考点指向质点,决定于参考点的选取3内力外力质点系内力:系统内部质点间的作用力外力:系统外部给内部质点的作用力质点系的动能定理质点系的动量定理质点系的角动量定理动量守恒条件:不受外力,外力之和为零,外力远小于内力动能守恒条件:同时不受外力和内力或内外做功代数和为零角动量守恒条件:不受外力矩,外力矩之和为零,外力矩远小于内力矩内力外力质点系内力:系统内部质点间的作用力外力:系4质点系的质心等效为质心的速度质点系的总质量oxyzCOyzrrcdmCx质点系的质心等效为质心的速度质点系的总质量oxyzCOyzr5牛顿第二定律动量定理动量守恒
质心运动定理质点系质心的运动与这样一个质点的运动具有相同的规律,该质点的质量等于质点系的总质量,作用于该质点的力等于作用于质点系的外力的矢量和。牛顿第二定律动量定理动量守恒质心运动定理质点系质心的运动与6
刚体的定轴转动1.各点绕轴作半径不同的圆周运动2.各转动平面垂直于转轴3.各点的,,
相同z特点:刚体的转动动能J
刚体的转动惯量,是刚体转动惯性的量度。质量连续分布刚体的转动惯量:质量元刚体的定轴转动1.各点绕轴作半径不同的圆周运动z特点:7转动惯量的计算先确定转轴x长为L质量m的细棒x半径R质量M的球转动惯量的计算先确定转轴x长为L质量m的细棒x半径R质量M的81.平行轴定理式中JC为刚体对通过质心的轴的转动惯量,
m是刚体的质量,d是两平行轴之间的距离。
2.转动惯量的叠加两根长为L质量m的细棒长为L质量m的细棒和半径R质量M的球1.平行轴定理式中JC为刚体对通过质心的轴的转动惯量,9刚体的转动动能刚体的角动量刚体做定轴转动的前提下刚体的势能方向:沿转动方向用右手质心的高度两类问题角动量不守恒角动量守恒外力距始终为零内力远大于外力碰撞碰撞前后瞬间角动量守恒整个过程角动量守恒注意:1如果外力是保守力,则机械能守恒 2角量与线量的关系定轴转动定理合外力距所做的功等于刚体转动动能的增量求求如果外力为零动能守恒如果完全非弹性
动能守恒刚体的转动动能刚体的角动量刚体做定轴转动的前提下刚体的势能方10问:碰撞后质点的速度,棒的角速度已知:质量为M长度为2l的细棒,质量为m的质点,垂直于棒碰撞在边缘,完全弹性,平面光滑动能守恒,角动量守恒第一步:建立坐标系,选择参考点第二步:列方程如果碰撞发生在距端点l/2处?问:碰撞后质点的速度,棒的角速度已知:质量为M长度为2l11质量为m长度为l的细杆,可绕O在竖直平面内转动。求:由水平自由释放瞬间杆的角加速度
摆动到夹角为时的角速度角动量不守恒定轴转动定理合外力距所做的功等于刚体转动动能的增量求求建立坐标系,选择参考点质量为m长度为l的细杆,可绕O在竖直平面内转动。角动量不守恒12第六章流体力学v1v2S1S2体积流量(流量)单位时间内流过某一截面的流体体积。S1
v1=S2
v2Sv=恒量理想流体的连续性方程绝对不可压缩,完全没有黏性的流体理想流体的伯努利方程理想流体:第六章流体力学v1v2S1S2体积流量(流量)单位时间内13普通物理总复习课件14fΔsp0Psp2fPsp3ffp0Δs凸形液面凹形液面ffp0Δs平坦液面p1ps称为附加压强附加压强与外部压强相同为正,相反为负。液体的表面张力f=L
R是球形液面的曲率半径fΔsp0Psp2fPsp3ffp0Δs凸形液面凹形液面ff15大气压强为P0,半径R的气泡内部的压强?气泡的厚度大约在微米量级,而液体表面层的厚度在纳米量级p内p0p液大气压强为P0,半径R的气泡内部的压强?气泡的厚度大约在微米16简谐振动X0
xxt01.振幅A2.周期和频率3.相位和初相位机械能守恒动能与势能相互转化简谐振动X0xxt01.振幅A2.17两个同方向同频率简谐运动合成后仍为同频率的简谐运动合振动的振幅合振动的频率频率较大而频率之差很小的两个同方向简谐运动的合成,其合振动的振幅时而加强时而减弱的现象叫拍.两个同方向同频率简谐运动合成后仍为同频率的简谐运动合振动的振18阻尼振动:振幅随时间减小的振动其中是一种准周期性运动。受迫振动:在周期性外力作用下发生的阻尼振动当驱动力的频率接近固有频率时,受迫振动振幅急剧增大的现象,称为共振。阻尼振动:振幅随时间减小的振动其中是一种准周期性运动。受19平面简谐波的波函数物理意义:位置为x的质点在t时刻的偏离平衡位置的位移OyBA
1x一定,
t变化
位置为x点处质点的振动方程(y~t的关系)2
t一定,x变化t时刻波传播方向上各质点的位移,即t时刻的波形(y~t的关系)平面简谐波的波函数物理意义:位置为x的质点在t时刻的偏离平衡20沿x轴正方向传播的平面简谐波的波函数。利用和波矢沿x轴正方向传播的平面简谐波的波函数。利用和波矢21波的干涉现象和规律S1S2波源S波频率相同,振动方向相同,位相差恒定某些点振动始终加强,另一些点振动始终减弱或完全抵消.(2)干涉现象满足干涉条件的波称相干波.(1)干涉条件本质:波的相干叠加引起波强度的重新分布波的干涉现象和规律S1S2波源S波频率相同,振动方向相同,位22当(半波长偶数倍)合振幅最大当(半波长奇数倍)
合振幅最小
干涉的波程差条件S2S1P波程差相位差叠加后波的振幅叠加区域振幅的空间分布加强减弱当(半波长偶数倍)合振幅最大当(半波长奇数倍)合振幅最小23多普勒效应Vo乙甲频率改变的原因:在观察者运动的情况下,频率改变是由于观察者观测到的波数增加或减少;在波源运动的情况下,频率改变是由于波长的缩短或伸长。观察者向波源运动时Vo取+波源向观察者运动时Vs取-多普勒效应Vo乙甲频率改变的原因:观察者向波源运动时Vo取24理想气体的模型3.不存在分子力的相互作用,只考虑分子间碰撞和分子与容器器壁碰撞2.视为质点的气体分子遵从牛顿运动定律。1.分子是具有一定质量的单个或多个质点的组合。4.碰撞都是完全弹性碰撞,碰撞前后动量和动能都守恒理想气体物态方程理想气体的模型3.不存在分子力的相互作用,只考虑分子间碰撞25气体压强是大量分子对容器器壁无规则剧烈碰撞的平均结果。理想气体压强的本质:理想气体温度的本质:温度是气体内部分子热运动强弱程度的标志。(1)温度是描述热力学系统平衡态的物理量。(2)温度是统计概念(是大量分子的集体表现,个别分子的温度无意义).(3)温度所反映的是分子的无规则运动,它和物体的整体运动无关。气体压强是大量分子对容器器壁无规则剧烈碰撞的平均结果。理想26理想气体的内能—能量均分定理一个分子的总自由度i=t+r+s一个分子的平均能量每个振动自由度贡献一个的动能,一个的势能理想气体的内能—能量均分定理一个分子的总自由度i=t+27一个系统内的气体分子总数为N,速率分布在某区间v~v+dv间隔内的分子数为dN
,dN与系统分子总数成正比,与所选速率间隔dv成正比dN与所选速率间隔的位置(也就是v的大小)有关速率分布在区间v~v+dv间隔内的分子数占总分子数的比值速率分布在区间v1~v2间隔内的分子数占总分子数的比值速率分布在区间0~间隔内的分子数必然等于总分子数,它占总分子数的比值必为1归一化条件一个系统内的气体分子总数为N,dN与系统分子总数成正比,与28
麦克斯韦分子速率分布曲线=图中阴影部分的面积速率分布在区间v1~v2间隔内的分子数占总分子数的比值f(v)vv1v2f(v)v讨论速率分布研究分子碰撞计算平均平动动能麦克斯韦分子速率分布曲线=图中阴影部分的面积速率分布在区间29平均碰撞频率一个分子在单位时间内所受到的平均碰撞次数。平均自由程一个气体分子在连续两次碰撞之间所可能经过的各段自由路程的平均值。平均速度:平均碰撞频率平均自由程平均速度:30准静态过程过程方程吸收的热量等压过程等体过程等温过程绝热过程
恒量
恒量下标1代表初态,下标2代表末态准静态过程过程方程吸收的热量等压过程等体过程等温过程绝热过程31经历一个循环后,系统的态函数不变!1、定义:系统经过一系列状态变化过程回到原状态2、特点:3、种类:正循环:沿顺时针进行逆循环:沿逆时针进行循环热机:从高温热源吸收热量,并对外界作功,同时向低温热源释放热量制冷机:外界对系统作功,使系统从低温热源吸收热量,同时向高温热源释放热量AQ2Q1高温热源T1低温热源T2高温热源T1低温热源T2AQ1Q2经历一个循环后,系统的态函数不变!1、定义:系统经过一系列状32例
31mol氧气作如图所示的循环.求循环效率.氧气可看作刚性双原子理想气体解题思路:pVpV000等温abc02V分析每一个过程中吸收和放出的热量a到b:等压b到c:等体c到a:等温吸热放热放热例31mol氧气作如图所示的循环.求循环效率.解题思路:33a到b:等压b到c:等体c到a:等温吸热放热放热pVpV000等温abc02Va到b:等压b到c:等体c到a:等温吸热放热放热pVpV0034第十章电荷与静电场库仑力电场强度电通量高斯定理单位点电荷受的库仑力S面上任意一点的电场强度E与该点处面元dS的点乘在整个曲面S上的代数和静电场中任何意闭合曲面S的电通量,等于该曲面所包围的电量除以e
0
而与S以外的电荷无关。第十章电荷与静电场库仑力电场强度电通量高斯定理单位点电荷受35高斯定理单个点电荷+QS多个点电荷+Q+QS多个点电荷,高斯面只包围单个点电荷+Q+QS多个点电荷,高斯面不包围点电荷+Q+QS静电场中任何意闭合曲面S的电通量,等于该曲面所包围的电量除以e
0
而与S以外的电荷无关。高斯定理单个点电荷+QS多个点电荷+Q+QS多个点电荷,高斯36电势与电场强度的关系静电场是保守场:电荷运动时电场力所作的功只与起始和终了的位置有关,而与路径无关。电场中某点P的电势,等于把单位正电荷从P点经任意路径移动到无限远处时,静电场力所作的功。(积分关系)电场中某点P的电场强度,等于该点电势的负梯度。(微分关系)电场强度为零的地方,电势不一定为零,如两个等电量正电荷连线的中点:电势为零的地方,电场强度不一定为零,如两个正负等电量电荷连线的中点:+Q+Q+Q-Q电势与电场强度的关系静电场是保守场:电荷运动时电场力所作的37静电场中的金属导体性质:导体内部电场强度为零,整个导体是等势体,导体表面是等势面导体表面附近的电场强度处处与表面垂直导体内部不存在静电荷,所有过剩电荷都分布在导体表面上++++++++++EEE’静电场中的金属导体性质:++++++++++EEE’38导体空腔+Q+Q高斯定理已知导体内部电场强度为零,+Q+Q电荷分布?电场分布?电势分布?内外都无电荷内壁0,外壁+Q内壁-Q,外壁+Q内壁-Q,外壁+2QE处处为零V处处为零内E=0,外同+Q点电荷,导体内部E=0内外都同+Q点电荷,导体内部E=0内同+Q点电荷,外同+2Q点电荷,导体内部E=0导体空腔+Q+Q高斯定理已知导体内部电场强度为零,+Q+Q电39导体空腔外部接地+Q+Q高斯定理已知导体内部电场强度为零,+Q+Q电荷分布?电场分布?电势分布?内外都无电荷内壁-Q,外壁0内壁-Q,外壁0E处处为零V处处为零内都同+Q点电荷,导体内部和外部E=0内都同+Q点电荷,导体内部和外部E=0导体空腔外部接地+Q+Q高斯定理已知导体内部电场强度为零,+40电容,电介质,静电场的能量绝对电容率真空电容率相对电容率极化率有介质存在时,用D比较方便,如书中294页例题R1R2R3在金属球壳带电量为Q,内部有一个均匀带电量为Q相对电容率为的r电介质球,求空间电场强度与电势分布静电场的能量密度:电容,电介质,静电场的能量绝对电容率真空电容率相对电容率极化41稳恒电流
电流强度I
:单位时间内通过导体截面的电量。电流密度是描述电流分布的矢量。在导体中任意一点的方向与正载流子在该点的流动方向相同,大小等于通过该点并垂直于电流的单位截面的电流强度。欧姆定律的微分形式:欧姆定律R1R2R3三个电阻的电阻率(或电导率)相同,假设电流在电阻中均匀分布,比较这三个电阻中电流强度,电流密度,电场强度的相对大小稳恒电流电流强度I:单位时间内通过导体截面的电量。42磁感应强度与毕奥-萨伐尔定律电流元矢量位矢无限长载流直导线+.圆形载流导线圆心处四分之一圆弧载流导线圆心处磁感应强度与毕奥-萨伐尔定律电流元矢量位矢无限长载流直导线+43磁场的安培环路定理磁感应强度沿任意闭合环路的积分等于此环路所包围的电流代数和的0倍。.+.+.+.+.+.+.+.+.+.+.+.+.+无限长密绕螺线管内部磁场,单位长度上的匝数为n,电流为I磁场的安培环路定理磁感应强度沿任意闭合环路的积分等于此环路所44.+.+.+.+.+.+.+.+环的内径为R1外径为R2,匝数密度为n,电流强度为I磁感应强度在环内是不均匀的环的内径为R1外径为R2,总匝数为N,电流强度为I.+.+.+.+.+.+.+.+环的内径为R1外径为R2,45--两个相同的电子,一个的初速是另一个的两倍带电粒子在磁场中的运动46电磁感应现象当穿过导体回路的磁通量发生变化时,回路中必定产生感生电动势导体回路中感应电动势的大小与穿过该回路的磁通量的时间变化率成正比变化的磁场能够在空间中产生感应电场,它与静电场一样能够对电荷产生作用力,但不是保守场闭合回路中感应电流的方向总是使得它所激发的磁场阻碍引起感应电流的磁通量的变化动生电动势导体在磁场中运动所产生的感应电动势感生电动势导体不动,而由于磁场的大小或方向变化所产生的感应电动势,称为感生电动势下册6~7页两个例题电磁感应现象当穿过导体回路的磁通量发生变化时,回路中必定产生47电容和电感与器件自身的大小和形状有关与填充的介质有关平行板电容器长直螺线管充入相对电容率为r的电介质充入相对磁导率为r的电介质电容和电感与器件自身的大小和形状有关平行板电容器长直螺线管充48电路:基尔霍夫定律第一定律:汇集同一节点的各支路电流的代数和必定为零
第二定律:一个回路中电阻上电势降落的代数和必定等于电源电动势的代数和注意电流,电势降落以及电动势正负号的选择eR1R2R3R4G直流电桥的平衡条件(即通过检流计G的电流为零)R1R4=R2R3电路:基尔霍夫定律第一定律:汇集同一节点的各支路电流的代数和49交流电路I0u(t)i(t)u(t)i(t)u(t)i(t)ZR=R,
=0ZL=L
,=/2ZC=1/C,=/2纯电阻电路纯电感电路纯电容电路电压超前于电流/2的相位电压落后于电流/2的相位电压与电流同相位反映元件电压u(t)与过其中电流i(t)关系有两个:交流电简谐量瞬时值,峰值和有效值it0交流电路I0u(t)i(t)u(t)i(t)u(t)i(t)50矢量图解法求解串联电路电路上的电流为i(t)=I0cos(t-)RL串联电路的阻抗为:RL串联电路的相位为U与I之间的夹角即电压与电流的相位差~u(t)=U0coswti(t)=?ALRIxyURULUu(t)=U0coswtUR=IZR=IR;UL=IZL=IL
同理,RC串联电路的阻抗为:矢量图解法求解串联电路电路上的电流为i(t)=I0cos51矢量图解法求解并联电路
RC并联电路的阻抗电路上的电流为i(t)=I0cos(t+).RC并联电路的相位就是U与I之间夹角电流超前于电压,为负值,
=-arctan(CR)IC=UC
i(t)=?u(t)=U0coswt~ACRIR=U/R
IxyIRICUi(t)
同理RL并联电路的阻抗
=-arctan(R/L)矢量图解法求解并联电路RC并联电路的阻抗电路上的电流为52光的干涉光的干涉:相干光波的叠加所引起光强重新分部P干涉项如果两束光到P点强度相等在相遇处各点的光强决定于两列光波到达该点的光程差。干涉加强干涉相消光的干涉光的干涉:相干光波的叠加所引起光强重新分部P干涉项如53杨氏双缝干涉S1S2实验现象:光源S杨氏双缝干涉S1S2实验现象:光源S54相邻明条纹中心或相邻暗条纹中心间距
光强分布纹宽条纹特征1、一系列平行的等间距的、明暗相间的条纹2、Δx
正比
,D;反比2a3、用白光作为光源时,在零级白色中央条纹两边对称排列着由紫向红的彩色条纹
4I0xI0k012-1-2x1x2x-2x-1明纹中心坐标相邻明条纹中心或相邻暗条纹中心间距光强分布纹宽条纹特征155分振幅干涉PSABCD干涉加强
干涉消光
无半波损失有半波损失分振幅干涉PSABCD干涉加强干涉消光无半波损失有半波损56等倾干涉与等厚干涉处于同一条干涉条纹上的各个光点,是由从光源到薄膜的相同倾角的入射光所形成的,故把这种干涉称为等倾干涉。如:增透膜,水面上的油膜
处于同一条干涉条纹上的各个光点,是由薄膜上厚度相同的地方的反射光所形成的,故称这种干涉为等厚干涉。如:牛顿环,暗环半径等倾干涉与等厚干涉处于同一条干涉条纹上的各个光点,是由从光源57衍射每一组平行光透过透狭缝平面就是入射波的波前,单缝平面上每个点都是发射子波的波源;将狭缝等分成好多条,每条狭缝发出射向各个方向的子波射线,具有相同的衍射方向的衍射光组成一组平行光,每一组平行光通过透镜会聚在焦面接收屏的同一点。镜在汇聚点上干涉,屏上是亮暗条纹,不同组平行光汇聚不同点不发生干涉,屏上任一点光强是由一组平行光相干叠加决定的;(2)主极大(中央明纹中心)位置(3)极小(暗纹)位置:(1)相同点的光强相同,亮暗条纹平行于单缝(4)点O到第一暗条纹中心的角距离,称为主极大的半角宽度0,近似等于/a。ABO衍射每一组平行光透过透狭缝平面就是入射波的波前,单缝平面上每58光栅ABO焦平面P光栅:大量等宽等间距的平行狭缝(或反射面)构成的光学元件透光宽度不透光宽度光栅常数光栅衍射条纹是单缝衍射和缝间干涉的共同结果。光栅ABO焦平面P光栅:大量等宽等间距的平行狭缝(或反射59复习:光栅ABO焦平面P缝间干涉单缝衍射光栅衍射=缝间干涉单缝衍射(1)屏上任意一点的光强等于干涉光强和单缝衍射光强的乘积。(3)光栅方程:本质是多缝干涉
dsin
=k,k=
0,1,2,…(2)主极大的光强光栅衍射条纹是单缝衍射和缝间干涉的共同结果。复习:光栅ABO焦平面P缝间干涉单缝衍射光栅衍射=缝间干60缺级现象光栅方程
dsin
=k,k=
0,1,2,…单缝衍射方程
明暗例如缺级缺级缺级条件缺级现象光栅方程dsin=k,k=61例题1:用波长为589.3nm的平行钠黄光垂直照射光栅,光栅每毫米500条刻痕,且a=b,问最多能观察到几条亮线?并求第一和第三级谱线的衍射角。解:光栅常量:最多能观察到的谱线条数:7条观察到5条例题1:用波长为589.3nm的平行钠黄光垂直照射光栅,光62偏振自然光:光矢量E对传播方向均匀对称分布波的振动方向对传播方向的不对称性—偏振.自然光等效矢量分解E1E2用任意垂直的E1与E2表示互相垂直,互相独立,振幅相等的光振动。两个光振动各自占自然光光强的一半。偏振光:光矢量E只有一个振动方向。某一方向的光振动占优势的光为部分偏振光自然光+偏振光偏振自然光:光矢量E对传播方向均匀对称分布波的振动方向对传播63偏振:布儒斯特定律法线自然光n1n2i0当入射角等于某一特定角i0时,反射光成为振动面垂直于入射面的线偏振光,折射定律完全偏振光部分偏振光布儒斯特角偏振:布儒斯特定律法线自然光n1n2i0当入射角等于某一特定64马吕斯定律起偏器自然光线偏振光I0I=I0/2检偏器线偏振光I=?∥⊥A∥A⊥A马吕斯定律起偏器自然光线偏振光I0I=I0/2检偏器线偏振光65如何检偏部分偏振光通过360o转的偏振片,透射光光强出现两次最强两次最弱,不出现消光。自然光线偏振光部分偏振光线偏振光线偏振光自然光通过360o转的偏振片,透射光光强始终不变偏振光通过360o转的偏振片,透射光光强出现两次消光部分偏振光如何检偏部分偏振光通过360o转的偏振片,透射光光强出现两次66黑体辐射(普朗克辐射公式)式中h称为普朗克常量,其值为h=6.626075510-34Js。物体若发射或吸收频率为的电磁辐射,只能以
=h为单位进行,这个最小能量单位就是能量量子,物体所发射或吸收的电磁辐射能量总是这个能量子的整数倍黑体辐射(普朗克辐射公式)式中h称为普朗克常量,其值为h67光电效应GUAK光电管入射光一、光电效应的实验规律1光电流的强度:对于同一单色光,单位时间内逸出金属表面的光电子数,与入射光强成正比2光电子的初动能:光电子的初动能随入射光频率的上升而线性地增大,但与入射光强无关。3引起光电效应的入射光的频率下限:如果入射光的频率低于该金属的红限,则无论入射光强多大,都不会使这种金属产生光电效应(金属的红限)4.引起光电效应的时间:只要入射光的频率大于该金属的红限,当光照射到这种金属的表面时,几乎立即产生光电子,而无论光强多大光电效应GUAK光电管入射光一、光电效应的实验规律1光68爱因斯坦的光子论及其对光电效应的解释
光子假说:光是一粒一粒以光速运动的粒子流,这种粒子流称为光子,或光量子。每一个光子的能量由光的频率所决定。
频率为的光子的能量为=h
光子在运动时具有的质量、能量和动量为其中电子从入射光中吸收一个光子后,能量变为h,能量一部分消耗于逸出金属表面时所必须的逸出功A,另一部分转变为光电子的初动能,由能量守恒得:光电效应的爱因斯坦方程爱因斯坦的光子论及其对光电效应的解释光子假说:光是一粒一粒69德布罗意波光兼有波和粒子两方面性质,不只是光子的特性,而是光子和一切实物粒子共同的本性。质量为m、以速率u作匀速运动的实物粒子,从波动性看,有其波长为德布罗意波长德布罗意波光兼有波和粒子两方面性质,不只是光子的特性,而70祝大家:学业有成,前程似锦!谢谢大家!祝大家:学业有成,前程似锦!谢谢大家!71(1)质点速度和加速度随时间变化关系(3)轨迹方程已知一质点运动方程求例(2)t=2s时,求(2)当t=2s时(3)轨迹方程为解(1)一旦求分量,一定是标量!!!(1)质点速度和加速度随时间变化关系(3)轨迹方程已知一72第二章机械能守恒定律势能:由物体间的相互作用和相对位置决定的能量研究对象是两个或两个以上的质点或物体组成的系统保守力物体在保守力的作用下,沿任意闭合路径绕行一周所作的功恒等于零,即保守力做的功只于始末位置(相对)有关由相对位置唯一决定的能量描述:势能第二章机械能守恒定律势能:由物体间的相互作用和相对位置73质点的角动量:位置矢量,由参考点指向质点,决定于参考点的选取角动量是描述质点的运动方向相对于参考点的变化或物体的转动特征的物理量pxyzO))力矩定义:位置矢量,由参考点指向质点,决定于参考点的选取。:作用于质点的力力对点的力矩:yxzo质点的角动量:位置矢量,由参考点指向质点,决定于参考点的选取74内力外力质点系内力:系统内部质点间的作用力外力:系统外部给内部质点的作用力质点系的动能定理质点系的动量定理质点系的角动量定理动量守恒条件:不受外力,外力之和为零,外力远小于内力动能守恒条件:同时不受外力和内力或内外做功代数和为零角动量守恒条件:不受外力矩,外力矩之和为零,外力矩远小于内力矩内力外力质点系内力:系统内部质点间的作用力外力:系75质点系的质心等效为质心的速度质点系的总质量oxyzCOyzrrcdmCx质点系的质心等效为质心的速度质点系的总质量oxyzCOyzr76牛顿第二定律动量定理动量守恒
质心运动定理质点系质心的运动与这样一个质点的运动具有相同的规律,该质点的质量等于质点系的总质量,作用于该质点的力等于作用于质点系的外力的矢量和。牛顿第二定律动量定理动量守恒质心运动定理质点系质心的运动与77
刚体的定轴转动1.各点绕轴作半径不同的圆周运动2.各转动平面垂直于转轴3.各点的,,
相同z特点:刚体的转动动能J
刚体的转动惯量,是刚体转动惯性的量度。质量连续分布刚体的转动惯量:质量元刚体的定轴转动1.各点绕轴作半径不同的圆周运动z特点:78转动惯量的计算先确定转轴x长为L质量m的细棒x半径R质量M的球转动惯量的计算先确定转轴x长为L质量m的细棒x半径R质量M的791.平行轴定理式中JC为刚体对通过质心的轴的转动惯量,
m是刚体的质量,d是两平行轴之间的距离。
2.转动惯量的叠加两根长为L质量m的细棒长为L质量m的细棒和半径R质量M的球1.平行轴定理式中JC为刚体对通过质心的轴的转动惯量,80刚体的转动动能刚体的角动量刚体做定轴转动的前提下刚体的势能方向:沿转动方向用右手质心的高度两类问题角动量不守恒角动量守恒外力距始终为零内力远大于外力碰撞碰撞前后瞬间角动量守恒整个过程角动量守恒注意:1如果外力是保守力,则机械能守恒 2角量与线量的关系定轴转动定理合外力距所做的功等于刚体转动动能的增量求求如果外力为零动能守恒如果完全非弹性
动能守恒刚体的转动动能刚体的角动量刚体做定轴转动的前提下刚体的势能方81问:碰撞后质点的速度,棒的角速度已知:质量为M长度为2l的细棒,质量为m的质点,垂直于棒碰撞在边缘,完全弹性,平面光滑动能守恒,角动量守恒第一步:建立坐标系,选择参考点第二步:列方程如果碰撞发生在距端点l/2处?问:碰撞后质点的速度,棒的角速度已知:质量为M长度为2l82质量为m长度为l的细杆,可绕O在竖直平面内转动。求:由水平自由释放瞬间杆的角加速度
摆动到夹角为时的角速度角动量不守恒定轴转动定理合外力距所做的功等于刚体转动动能的增量求求建立坐标系,选择参考点质量为m长度为l的细杆,可绕O在竖直平面内转动。角动量不守恒83第六章流体力学v1v2S1S2体积流量(流量)单位时间内流过某一截面的流体体积。S1
v1=S2
v2Sv=恒量理想流体的连续性方程绝对不可压缩,完全没有黏性的流体理想流体的伯努利方程理想流体:第六章流体力学v1v2S1S2体积流量(流量)单位时间内84普通物理总复习课件85fΔsp0Psp2fPsp3ffp0Δs凸形液面凹形液面ffp0Δs平坦液面p1ps称为附加压强附加压强与外部压强相同为正,相反为负。液体的表面张力f=L
R是球形液面的曲率半径fΔsp0Psp2fPsp3ffp0Δs凸形液面凹形液面ff86大气压强为P0,半径R的气泡内部的压强?气泡的厚度大约在微米量级,而液体表面层的厚度在纳米量级p内p0p液大气压强为P0,半径R的气泡内部的压强?气泡的厚度大约在微米87简谐振动X0
xxt01.振幅A2.周期和频率3.相位和初相位机械能守恒动能与势能相互转化简谐振动X0xxt01.振幅A2.88两个同方向同频率简谐运动合成后仍为同频率的简谐运动合振动的振幅合振动的频率频率较大而频率之差很小的两个同方向简谐运动的合成,其合振动的振幅时而加强时而减弱的现象叫拍.两个同方向同频率简谐运动合成后仍为同频率的简谐运动合振动的振89阻尼振动:振幅随时间减小的振动其中是一种准周期性运动。受迫振动:在周期性外力作用下发生的阻尼振动当驱动力的频率接近固有频率时,受迫振动振幅急剧增大的现象,称为共振。阻尼振动:振幅随时间减小的振动其中是一种准周期性运动。受90平面简谐波的波函数物理意义:位置为x的质点在t时刻的偏离平衡位置的位移OyBA
1x一定,
t变化
位置为x点处质点的振动方程(y~t的关系)2
t一定,x变化t时刻波传播方向上各质点的位移,即t时刻的波形(y~t的关系)平面简谐波的波函数物理意义:位置为x的质点在t时刻的偏离平衡91沿x轴正方向传播的平面简谐波的波函数。利用和波矢沿x轴正方向传播的平面简谐波的波函数。利用和波矢92波的干涉现象和规律S1S2波源S波频率相同,振动方向相同,位相差恒定某些点振动始终加强,另一些点振动始终减弱或完全抵消.(2)干涉现象满足干涉条件的波称相干波.(1)干涉条件本质:波的相干叠加引起波强度的重新分布波的干涉现象和规律S1S2波源S波频率相同,振动方向相同,位93当(半波长偶数倍)合振幅最大当(半波长奇数倍)
合振幅最小
干涉的波程差条件S2S1P波程差相位差叠加后波的振幅叠加区域振幅的空间分布加强减弱当(半波长偶数倍)合振幅最大当(半波长奇数倍)合振幅最小94多普勒效应Vo乙甲频率改变的原因:在观察者运动的情况下,频率改变是由于观察者观测到的波数增加或减少;在波源运动的情况下,频率改变是由于波长的缩短或伸长。观察者向波源运动时Vo取+波源向观察者运动时Vs取-多普勒效应Vo乙甲频率改变的原因:观察者向波源运动时Vo取95理想气体的模型3.不存在分子力的相互作用,只考虑分子间碰撞和分子与容器器壁碰撞2.视为质点的气体分子遵从牛顿运动定律。1.分子是具有一定质量的单个或多个质点的组合。4.碰撞都是完全弹性碰撞,碰撞前后动量和动能都守恒理想气体物态方程理想气体的模型3.不存在分子力的相互作用,只考虑分子间碰撞96气体压强是大量分子对容器器壁无规则剧烈碰撞的平均结果。理想气体压强的本质:理想气体温度的本质:温度是气体内部分子热运动强弱程度的标志。(1)温度是描述热力学系统平衡态的物理量。(2)温度是统计概念(是大量分子的集体表现,个别分子的温度无意义).(3)温度所反映的是分子的无规则运动,它和物体的整体运动无关。气体压强是大量分子对容器器壁无规则剧烈碰撞的平均结果。理想97理想气体的内能—能量均分定理一个分子的总自由度i=t+r+s一个分子的平均能量每个振动自由度贡献一个的动能,一个的势能理想气体的内能—能量均分定理一个分子的总自由度i=t+98一个系统内的气体分子总数为N,速率分布在某区间v~v+dv间隔内的分子数为dN
,dN与系统分子总数成正比,与所选速率间隔dv成正比dN与所选速率间隔的位置(也就是v的大小)有关速率分布在区间v~v+dv间隔内的分子数占总分子数的比值速率分布在区间v1~v2间隔内的分子数占总分子数的比值速率分布在区间0~间隔内的分子数必然等于总分子数,它占总分子数的比值必为1归一化条件一个系统内的气体分子总数为N,dN与系统分子总数成正比,与99
麦克斯韦分子速率分布曲线=图中阴影部分的面积速率分布在区间v1~v2间隔内的分子数占总分子数的比值f(v)vv1v2f(v)v讨论速率分布研究分子碰撞计算平均平动动能麦克斯韦分子速率分布曲线=图中阴影部分的面积速率分布在区间100平均碰撞频率一个分子在单位时间内所受到的平均碰撞次数。平均自由程一个气体分子在连续两次碰撞之间所可能经过的各段自由路程的平均值。平均速度:平均碰撞频率平均自由程平均速度:101准静态过程过程方程吸收的热量等压过程等体过程等温过程绝热过程
恒量
恒量下标1代表初态,下标2代表末态准静态过程过程方程吸收的热量等压过程等体过程等温过程绝热过程102经历一个循环后,系统的态函数不变!1、定义:系统经过一系列状态变化过程回到原状态2、特点:3、种类:正循环:沿顺时针进行逆循环:沿逆时针进行循环热机:从高温热源吸收热量,并对外界作功,同时向低温热源释放热量制冷机:外界对系统作功,使系统从低温热源吸收热量,同时向高温热源释放热量AQ2Q1高温热源T1低温热源T2高温热源T1低温热源T2AQ1Q2经历一个循环后,系统的态函数不变!1、定义:系统经过一系列状103例
31mol氧气作如图所示的循环.求循环效率.氧气可看作刚性双原子理想气体解题思路:pVpV000等温abc02V分析每一个过程中吸收和放出的热量a到b:等压b到c:等体c到a:等温吸热放热放热例31mol氧气作如图所示的循环.求循环效率.解题思路:104a到b:等压b到c:等体c到a:等温吸热放热放热pVpV000等温abc02Va到b:等压b到c:等体c到a:等温吸热放热放热pVpV00105第十章电荷与静电场库仑力电场强度电通量高斯定理单位点电荷受的库仑力S面上任意一点的电场强度E与该点处面元dS的点乘在整个曲面S上的代数和静电场中任何意闭合曲面S的电通量,等于该曲面所包围的电量除以e
0
而与S以外的电荷无关。第十章电荷与静电场库仑力电场强度电通量高斯定理单位点电荷受106高斯定理单个点电荷+QS多个点电荷+Q+QS多个点电荷,高斯面只包围单个点电荷+Q+QS多个点电荷,高斯面不包围点电荷+Q+QS静电场中任何意闭合曲面S的电通量,等于该曲面所包围的电量除以e
0
而与S以外的电荷无关。高斯定理单个点电荷+QS多个点电荷+Q+QS多个点电荷,高斯107电势与电场强度的关系静电场是保守场:电荷运动时电场力所作的功只与起始和终了的位置有关,而与路径无关。电场中某点P的电势,等于把单位正电荷从P点经任意路径移动到无限远处时,静电场力所作的功。(积分关系)电场中某点P的电场强度,等于该点电势的负梯度。(微分关系)电场强度为零的地方,电势不一定为零,如两个等电量正电荷连线的中点:电势为零的地方,电场强度不一定为零,如两个正负等电量电荷连线的中点:+Q+Q+Q-Q电势与电场强度的关系静电场是保守场:电荷运动时电场力所作的108静电场中的金属导体性质:导体内部电场强度为零,整个导体是等势体,导体表面是等势面导体表面附近的电场强度处处与表面垂直导体内部不存在静电荷,所有过剩电荷都分布在导体表面上++++++++++EEE’静电场中的金属导体性质:++++++++++EEE’109导体空腔+Q+Q高斯定理已知导体内部电场强度为零,+Q+Q电荷分布?电场分布?电势分布?内外都无电荷内壁0,外壁+Q内壁-Q,外壁+Q内壁-Q,外壁+2QE处处为零V处处为零内E=0,外同+Q点电荷,导体内部E=0内外都同+Q点电荷,导体内部E=0内同+Q点电荷,外同+2Q点电荷,导体内部E=0导体空腔+Q+Q高斯定理已知导体内部电场强度为零,+Q+Q电110导体空腔外部接地+Q+Q高斯定理已知导体内部电场强度为零,+Q+Q电荷分布?电场分布?电势分布?内外都无电荷内壁-Q,外壁0内壁-Q,外壁0E处处为零V处处为零内都同+Q点电荷,导体内部和外部E=0内都同+Q点电荷,导体内部和外部E=0导体空腔外部接地+Q+Q高斯定理已知导体内部电场强度为零,+111电容,电介质,静电场的能量绝对电容率真空电容率相对电容率极化率有介质存在时,用D比较方便,如书中294页例题R1R2R3在金属球壳带电量为Q,内部有一个均匀带电量为Q相对电容率为的r电介质球,求空间电场强度与电势分布静电场的能量密度:电容,电介质,静电场的能量绝对电容率真空电容率相对电容率极化112稳恒电流
电流强度I
:单位时间内通过导体截面的电量。电流密度是描述电流分布的矢量。在导体中任意一点的方向与正载流子在该点的流动方向相同,大小等于通过该点并垂直于电流的单位截面的电流强度。欧姆定律的微分形式:欧姆定律R1R2R3三个电阻的电阻率(或电导率)相同,假设电流在电阻中均匀分布,比较这三个电阻中电流强度,电流密度,电场强度的相对大小稳恒电流电流强度I:单位时间内通过导体截面的电量。113磁感应强度与毕奥-萨伐尔定律电流元矢量位矢无限长载流直导线+.圆形载流导线圆心处四分之一圆弧载流导线圆心处磁感应强度与毕奥-萨伐尔定律电流元矢量位矢无限长载流直导线+114磁场的安培环路定理磁感应强度沿任意闭合环路的积分等于此环路所包围的电流代数和的0倍。.+.+.+.+.+.+.+.+.+.+.+.+.+无限长密绕螺线管内部磁场,单位长度上的匝数为n,电流为I磁场的安培环路定理磁感应强度沿任意闭合环路的积分等于此环路所115.+.+.+.+.+.+.+.+环的内径为R1外径为R2,匝数密度为n,电流强度为I磁感应强度在环内是不均匀的环的内径为R1外径为R2,总匝数为N,电流强度为I.+.+.+.+.+.+.+.+环的内径为R1外径为R2,116--两个相同的电子,一个的初速是另一个的两倍带电粒子在磁场中的运动117电磁感应现象当穿过导体回路的磁通量发生变化时,回路中必定产生感生电动势导体回路中感应电动势的大小与穿过该回路的磁通量的时间变化率成正比变化的磁场能够在空间中产生感应电场,它与静电场一样能够对电荷产生作用力,但不是保守场闭合回路中感应电流的方向总是使得它所激发的磁场阻碍引起感应电流的磁通量的变化动生电动势导体在磁场中运动所产生的感应电动势感生电动势导体不动,而由于磁场的大小或方向变化所产生的感应电动势,称为感生电动势下册6~7页两个例题电磁感应现象当穿过导体回路的磁通量发生变化时,回路中必定产生118电容和电感与器件自身的大小和形状有关与填充的介质有关平行板电容器长直螺线管充入相对电容率为r的电介质充入相对磁导率为r的电介质电容和电感与器件自身的大小和形状有关平行板电容器长直螺线管充119电路:基尔霍夫定律第一定律:汇集同一节点的各支路电流的代数和必定为零
第二定律:一个回路中电阻上电势降落的代数和必定等于电源电动势的代数和注意电流,电势降落以及电动势正负号的选择eR1R2R3R4G直流电桥的平衡条件(即通过检流计G的电流为零)R1R4=R2R3电路:基尔霍夫定律第一定律:汇集同一节点的各支路电流的代数和120交流电路I0u(t)i(t)u(t)i(t)u(t)i(t)ZR=R,
=0ZL=L
,=/2ZC=1/C,=/2纯电阻电路纯电感电路纯电容电路电压超前于电流/2的相位电压落后于电流/2的相位电压与电流同相位反映元件电压u(t)与过其中电流i(t)关系有两个:交流电简谐量瞬时值,峰值和有效值it0交流电路I0u(t)i(t)u(t)i(t)u(t)i(t)121矢量图解法求解串联电路电路上的电流为i(t)=I0cos(t-)RL串联电路的阻抗为:RL串联电路的相位为U与I之间的夹角即电压与电流的相位差~u(t)=U0coswti(t)=?ALRIxyURULUu(t)=U0coswtUR=IZR=IR;UL=IZL=IL
同理,RC串联电路的阻抗为:矢量图解法求解串联电路电路上的电流为i(t)=I0cos122矢量图解法求解并联电路
RC并联电路的阻抗电路上的电流为i(t)=I0cos(t+).RC并联电路的相位就是U与I之间夹角电流超前于电压,为负值,
=-arctan(CR)IC=UC
i(t)=?u(t)=U0coswt~ACRIR=U/R
IxyIRICUi(t)
同理RL并联电路的阻抗
=-arctan(R/L)矢量图解法求解并联电路RC并联电路的阻抗电路上的电流为123光的干涉光的干涉:相干光波的叠加所引起光强重新分部P干涉项如果两束光到P点强度相等在相遇处各点的光强决定于两列光波到达该点的光程差。干涉加强干涉相消光的干涉光的干涉:相干光波的叠加所引起光强重新分部P干涉项如124杨氏双缝干涉S1S2实验现象:光源S杨氏双缝干涉S1S2实验现象:光源S125相邻明条纹中心或相邻暗条纹中心间距
光强分布纹宽条纹特征1、一系列平行的等间距的、明暗相间的条纹2、Δx
正比
,D;反比2a3、用白光作为光源时,在零级白色中央条纹两边对称排列着由紫向红的彩色条纹
4I0xI0k012-1-2x1x2x-2x-1明纹中心坐标相邻明条纹中心或相邻暗条纹中心间距光强分布纹宽条纹特征1126分振幅干涉PSABCD干涉加强
干涉消光
无半波损失有半波损失分振幅干涉PSABCD干涉加强干涉消光无半波损失有半波损127等倾干涉与等厚干涉处于同一条干涉条纹上的各个光点,是由从光源到薄膜的相同倾角的入射光所形成的,故把这种干涉称为等倾干涉。如:增透膜,水面上的油膜
处于同一条干涉条纹上的各个光点,是由薄膜上厚度相同的地方的反射光所形成的,故称这种干涉为等厚干涉。如:牛顿环,暗环半径等倾干涉与等厚干涉处于同一条干涉条纹上的各个光点,是由从光源128衍射每一组平行光透过透狭缝平面就是入射波的波前,单缝平面上每个点都是发射子波的波源;将狭缝等分成好多条,每条狭缝发出射向各个方向的子波射线,具有相同的衍射方向的衍射光组成一组平行光,每一组平行光通过透镜会聚在焦面接收屏的同一点。镜在汇聚点上干涉,屏上是亮暗条纹,不同组平行光汇聚不同点不发生干涉,屏上任一点光强是由一组平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租赁垃圾场地合同协议
- 甲乙签合同乙丙签协议
- 礼仪委托服务合同协议
- 电商分销渠道合同协议
- 省呗借款合同协议
- 型材代理商合同协议
- 妇产科病人的心理护理
- 未来汽车行业的挑战与机遇
- 汽车行车事故现场处置
- 中西医结合在肠胃炎症治疗中的临床疗效
- 汽车产业智能化升级路径-深度研究
- 研发中心工作流程
- 出租羊场合同范例
- 任务5 制作学院网站导航条
- 卫星导航定位技术与应用知到智慧树章节测试课后答案2024年秋南京工业大学
- 开封市第二届职业技能大赛无人机装调检修项目技术文件(国赛项目)
- 开题报告:高等职业院校双师型教师评价指标体系构建研究
- 医疗救助政策
- 浙江省宁波市余姚市2024年中考英语模拟试题(含答案)
- 服务质量保障措施方案
- 机场能源管理
评论
0/150
提交评论