2022届甘肃省徽县第二中学高考全国统考预测密卷数学试卷含解析_第1页
2022届甘肃省徽县第二中学高考全国统考预测密卷数学试卷含解析_第2页
2022届甘肃省徽县第二中学高考全国统考预测密卷数学试卷含解析_第3页
2022届甘肃省徽县第二中学高考全国统考预测密卷数学试卷含解析_第4页
2022届甘肃省徽县第二中学高考全国统考预测密卷数学试卷含解析_第5页
免费预览已结束,剩余15页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是()A.∥ B.∥C.∥∥ D.2.若直线与曲线相切,则()A.3 B. C.2 D.3.已知向量,,当时,()A. B. C. D.4.已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为()A. B. C. D.5.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路C.丙走桃花峪登山线路 D.甲走天烛峰登山线路6.已知集合,B={y∈N|y=x﹣1,x∈A},则A∪B=()A.{﹣1,0,1,2,3} B.{﹣1,0,1,2} C.{0,1,2} D.{x﹣1≤x≤2}7.已知,,分别为内角,,的对边,,,的面积为,则()A. B.4 C.5 D.8.阅读如图的程序框图,运行相应的程序,则输出的的值为()A. B. C. D.9.已知集合,则()A. B.C. D.10.已知函数满足,当时,,则()A.或 B.或C.或 D.或11.下图为一个正四面体的侧面展开图,为的中点,则在原正四面体中,直线与直线所成角的余弦值为()A. B.C. D.12.已知实数、满足约束条件,则的最大值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.点到直线的距离为________14.已知复数z是纯虚数,则实数a=_____,|z|=_____.15.在三棱锥中,三条侧棱两两垂直,,则三棱锥外接球的表面积的最小值为________.16.在的二项展开式中,所有项的系数的和为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,平面分别是上的动点,且.(1)若平面与平面的交线为,求证:;(2)当平面平面时,求平面与平面所成的二面角的余弦值.18.(12分)如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且过点.为椭圆的右焦点,为椭圆上关于原点对称的两点,连接分别交椭圆于两点.⑴求椭圆的标准方程;⑵若,求的值;⑶设直线,的斜率分别为,,是否存在实数,使得,若存在,求出的值;若不存在,请说明理由.19.(12分)在中,角所对的边分别为,,的面积.(1)求角C;(2)求周长的取值范围.20.(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满100元减20元;方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款7折8折9折原价(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;(2)若某顾客购物金额为180元,选择哪种方案更划算?21.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工:410,390,330,360,320,400,330,340,370,350乙公司员工:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.22.(10分)已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】

根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.【详解】对于A,当,,时,则平面与平面可能相交,,,故不能作为的充分条件,故A错误;对于B,当,,时,则,故不能作为的充分条件,故B错误;对于C,当,,时,则平面与平面相交,,,故不能作为的充分条件,故C错误;对于D,当,,,则一定能得到,故D正确.故选:D.【点睛】本题考查了面面垂直的判断问题,属于基础题.2.A【解析】

设切点为,对求导,得到,从而得到切线的斜率,结合直线方程的点斜式化简得切线方程,联立方程组,求得结果.【详解】设切点为,∵,∴由①得,代入②得,则,,故选A.【点睛】该题考查的是有关直线与曲线相切求参数的问题,涉及到的知识点有导数的几何意义,直线方程的点斜式,属于简单题目.3.A【解析】

根据向量的坐标运算,求出,,即可求解.【详解】,.故选:A.【点睛】本题考查向量的坐标运算、诱导公式、二倍角公式、同角间的三角函数关系,属于中档题.4.C【解析】

对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,,显然当时有,,∴经单调性分析知为的第一个极值点又∵时,∴,,,…,均为其极值点∵函数不能在端点处取得极值∴,,∴对应极值,,∴故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题5.D【解析】

甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路,丙走红门盘道徒步线路故选:D【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.6.A【解析】

解出集合A和B即可求得两个集合的并集.【详解】∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},∴A∪B={﹣2,﹣1,0,1,2,3}.故选:A.【点睛】此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.7.D【解析】

由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出的值.【详解】解:,即,即.,则.,解得.,故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角的正弦值余弦值.8.C【解析】

根据给定的程序框图,计算前几次的运算规律,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【详解】由题意,,第1次循环,,满足判断条件;第2次循环,,满足判断条件;第3次循环,,满足判断条件;可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.9.B【解析】

先由得或,再计算即可.【详解】由得或,,,又,.故选:B【点睛】本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.10.C【解析】

简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.11.C【解析】

将正四面体的展开图还原为空间几何体,三点重合,记作,取中点,连接,即为与直线所成的角,表示出三角形的三条边长,用余弦定理即可求得.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中三点重合,记作:则为中点,取中点,连接,设正四面体的棱长均为,由中位线定理可得且,所以即为与直线所成的角,,由余弦定理可得,所以直线与直线所成角的余弦值为,故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.12.C【解析】

作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.2【解析】

直接根据点到直线的距离公式即可求出。【详解】依据点到直线的距离公式,点到直线的距离为。【点睛】本题主要考查点到直线的距离公式的应用。14.11【解析】

根据复数运算法则计算复数z,根据复数的概念和模长公式计算得解.【详解】复数z,∵复数z是纯虚数,∴,解得a=1,∴z=i,∴|z|=1,故答案为:1,1.【点睛】此题考查复数的概念和模长计算,根据复数是纯虚数建立方程求解,计算模长,关键在于熟练掌握复数的运算法则.15.【解析】

设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积.【详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方.记外接球半径为,∴当时,.故答案为:.【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和.16.1【解析】

设,令,的值即为所有项的系数之和。【详解】设,令,所有项的系数的和为。【点睛】本题主要考查二项式展开式所有项的系数的和的求法─赋值法。一般地,对于,展开式各项系数之和为,注意与“二项式系数之和”区分。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)【解析】

(1)首先由线面平行的判定定理可得平面,再由线面平行的性质定理即可得证;(2)以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,利用空间向量法求出二面角的余弦值;【详解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因为平面,所以,又,所以平面,所以,又,所以.若平面平面,则平面,所以,由且,又,所以.以点为坐标原点,,所在的直线分别为轴,以过点且垂直于的直线为轴建立空间直角坐标系,则,,设则由,可得,,即,所以可得,所以,设平面的一个法向量为,则,,,取,得所以易知平面的法向量为,设平面与平面所成的二面角为,则,结合图形可知平面与平面所成的二面角的余弦值为.【点睛】本题考查线面平行的判定定理及性质定理的应用,利用空间向量法求二面角,解题时要认真审题,注意空间思维能力的培养,属于中档题.18.(1)(2)(3)【解析】试题分析:(1);(2)由椭圆对称性,知,所以,此时直线方程为,故.(3)设,则,通过直线和椭圆方程,解得,,所以,即存在.试题解析:(1)设椭圆方程为,由题意知:解之得:,所以椭圆方程为:(2)若,由椭圆对称性,知,所以,此时直线方程为,由,得,解得(舍去),故.(3)设,则,直线的方程为,代入椭圆方程,得,因为是该方程的一个解,所以点的横坐标,又在直线上,所以,同理,点坐标为,,所以,即存在,使得.19.(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并结合正弦定理可得到,利用,,可得到,进而可求出周长的范围.【详解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周长为.∵,∴,∴,∴的周长的取值范围为.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题.20.(1)(2)选择方案二更为划算【解析】

(1)计算顾客获得7折优惠的概率,获得8折优惠的概率,相加得到答案.(2)选择方案二,记付款金额为元,则可取的值为126,144,162,180.,计算概率得到数学期望,比较大小得到答案.【详解】(1)该顾客获得7折优惠的概率,该顾客获得8折优惠的概率,故该顾客获得7折或8折优惠的概率.(2)若选择方案一,则付款金额为.若选择方案二,记付款金额为元,则可取的值为126,144,162,180.,,则.因为,所以选择方案二更为划算.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.21.(1)平均数为360,众数为330;(2)见详解;(3)甲公司:70

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论