




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.若,则的值为()A. B. C. D.﹣2.如图,两条直线被三条平行线所截,若,则()A. B. C. D.3.cos60°的值等于()A. B. C. D.4.如图,点A、B、C在⊙O上,∠ACB=130°,则∠AOB的度数为()A.50° B.80° C.100° D.110°5.一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2 B.k<﹣2 C.k<2 D.k>26.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为()A.4 B.4 C.6 D.87.一元二次方程的二次项系数、一次项系数和常数项分别是()A.3,2,1 B.3,2,-1 C.3,-2,1 D.3,-2,-18.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B.2 C.6 D.89.已知正比例函数y=ax与反比例函数在同一坐标系中的图象如图,判断二次函数y=ax2+k在坐系中的大致图象是()A. B.C. D.10.已知反比例函数的解析式为,则的取值范围是A. B. C. D.11.下列几何图形不是中心对称图形的是()A.平行四边形 B.正五边形 C.正方形 D.正六边形12.如图,厂房屋顶人字架(等腰三角形)的跨度BC=10m,∠B=36°,D为底边BC的中点,则上弦AB的长约为()(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A.3.6m B.6.2m C.8.5m D.12.4m二、填空题(每题4分,共24分)13.某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为________.14.如图,在小孔成像问题中,小孔O到物体AB的距离是60cm,小孔O到像CD的距离是30cm,若物体AB的长为16cm,则像CD的长是_____cm.15.如图,将半径为2,圆心角为90°的扇形BAC绕点A逆时针旋转60°,点B、C的对应点分别为D、E,点D在上,则阴影部分的面积为_____.16.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=______17.如图,直线交轴于点B,交轴于点C,以BC为边的正方形ABCD的顶点A(-1,a)在双曲线上,D点在双曲线上,则的值为_______.18.若方程有两个相等的实数根,则m=________.三、解答题(共78分)19.(8分)如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.20.(8分)如图,已知△ABC,∠A=60°,AB=6,AC=1.(1)用尺规作△ABC的外接圆O;(2)求△ABC的外接圆O的半径;(3)求扇形BOC的面积.21.(8分)(1)(教材呈现)下图是华师版九年级上册数学教材第77页的部分内容.请根据教材提示,结合图23.4.2,写出完整的证明过程.(2)(结论应用)如图,△ABC是等边三角形,点D在边AB上(点D与点A、B不重合),过点D作DE∥BC交AC于点E,连结BE,M、N、P分别为DE、BE、BC的中点,顺次连结M、N、P.①求证:MN=PN;②∠MNP的大小是.22.(10分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?23.(10分)如图,已知,直线垂直平分交于,与边交于,连接,过点作平行于交于点,连.(1)求证:;(2)求证:四边形是菱形;(3)若,求菱形的面积.24.(10分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,篮球1个,黄球若干个,现从中任意摸出一个球是红球的概率为.(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;(3)现规定:摸到红球得5分,摸到黄球得3分(每次摸后放回),乙同学在一次摸球游戏中,第一次随机摸到一个红球第二次又随机摸到一个蓝球,若随机,再摸一次,求乙同学三次摸球所得分数之和不低于10分的概率.25.(12分)如图,在等腰三角形ABC中,于点H,点E是AH上一点,延长AH至点F,使.求证:四边形EBFC是菱形.26.小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.①若木杆的长为,则其影子的长为;②在同一时刻同一地点,将另一根木杆直立于地面,请画出表示此时木杆在地面上影子的线段;(2)如图2,夜晚在路灯下,小彬将木杆水平放置,此时木杆在水平地面上的影子为线段.①请在图中画出表示路灯灯泡位置的点;②若木杆的长为,经测量木杆距离地面,其影子的长为,则路灯距离地面的高度为.
参考答案一、选择题(每题4分,共48分)1、C【分析】将变形为﹣1,再代入计算即可求解.【详解】解:∵,∴=﹣1=﹣1=.故选:C.【点睛】考查了比例的性质,解题的关键是将变形为.2、D【解析】先根据平行线分线段成比例定理求出DF的长,然后可求出BF的长.【详解】,,即,解得,,,故选:.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.3、A【解析】试题分析:因为cos60°=,所以选:A.考点:特殊角的三角比值.4、C【分析】根据圆内接四边形的性质和圆周角定理即可得到结论.【详解】在优弧AB上任意找一点D,连接AD,BD.∵∠D=180°﹣∠ACB=50°,∴∠AOB=2∠D=100°,故选:C.【点睛】本题考查了圆周角定理,圆内接四边形的性质,正确的作出辅助线是解题的关键.5、D【分析】根据一元二次方程有两个不相等的实数根,得△即可求解.【详解】∵一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,∴△解得k>2.故选D.【点睛】本题考查一元二次方程△与参数的关系,列不等式是解题关键.6、B【分析】连接OA,OC,利用内接四边形的性质得出∠D=60°,进而得出∠AOC=120°,利用含30°的直角三角形的性质解答即可.【详解】连接OA,OC,过O作OE⊥AC,∵四边形ABCD是⊙O的内接四边形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故选:B.【点睛】此题考查内接四边形的性质,关键是利用内接四边形的性质得出∠D=60°.7、D【解析】根据一元二次方程一般式的系数概念,即可得到答案.【详解】一元二次方程的二次项系数、一次项系数和常数项分别是:3,-2,-1,故选D.【点睛】本题主要考查一元二次方程一般式的系数概念,掌握一元二次方程一般式的系数,是解题的关键.8、B【分析】连接OC,根据垂径定理和勾股定理,即可得答案.【详解】连接OC,
∵AB是⊙O的直径,弦CD⊥AB于点E,AB=8,AE=1,∴,
∴,∴,∴,故选:B.【点睛】本题考查了垂径定理和勾股定理,解题关键是学会添加常用辅助线面构造直角三角形解决问题.9、B【解析】根据正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,然后根据二次函数图象的性质即可得出答案.【详解】正比例函数y=ax与反比例函数y=的函数图象可知:a<0,k>0,
则二次函数y=ax2+k的图象开口向下,且与y轴的交点在y轴的正半轴,
所以大致图象为B图象.
故选B.【点睛】本题考查了二次函数及正比例函数与反比例函数的图象,属于基础题,关键是注意数形结合的思想解题.10、C【分析】根据反比例函数的定义可得|a|-2≠0,可解得.【详解】根据反比例函数的定义可得|a|-2≠0,可解得a≠±2.故选C.【点睛】本题考核知识点:反比例函数定义.解题关键点:理解反比例函数定义.11、B【分析】根据中心对称图形的定义如果一个图形绕着一个点旋转180°后能够与原图形完全重合即是中心对称图形,这个点叫做对称点.【详解】解:根据中心对称图形的定义来判断:A.平行四边形绕着对角线的交点旋转180°后与原图形完全重合,所以平行四边形是中心对称图形;B.正五边形无论绕着那个点旋转180°后与原图形都不能完全重合,所以正五边形不是中心对称图形;C.正方形绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形;D.正六边形是绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形.故选:B【点睛】本题考查了中心对称图形的判断方法.中心对称图形是一个图形,它绕着图形中的一点旋转180°后与原来的图形完全重合.12、B【分析】先根据等腰三角形的性质得出BD=BC=5m,AD⊥BC,再由cosB=,∠B=36°知AB=,代入计算可得.【详解】∵△ABC是等腰三角形,且BD=CD,∴BD=BC=5m,AD⊥BC,在Rt△ABD中,∵cosB=,∠B=36°,∴AB==≈6.2(m),故选:B.【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt△ABD,再利用三角函数求解.二、填空题(每题4分,共24分)13、20%.【分析】一般用增长后的量=增长前的量×(1+增长率),再根据题意列出方程5(1+x)2=7.2,即可解答.【详解】设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.故答案是:20%.【点睛】此题考查一元二次方程的应用,解题关键在于列出方程.14、8【解析】根据相似三角形的性质即可解题.【详解】解:由小孔成像的特征可知,△OAB∽△OCD,由相似三角形的性质可知:对应高比=相似比=对应边的比,∴30:60=CD:16,解得:CD=8cm.【点睛】本题考查了相似三角形的判定和性质,属于简单题,熟悉性质内容是解题关键.15、【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.【详解】连接BD,过点B作BN⊥AD于点N,∵将半径为2,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=1,BN=,S阴影=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD==π﹣=.故答案为.【点睛】考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.16、【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.17、6【分析】先确定出点A的坐标,进而求出AB,再确定出点C的坐标,利用平移即可得出结论.【详解】∵A(−1,a)在反比例函数y=上,∴a=2,∴A(−1,2),∵点B在直线y=kx−1上,∴B(0,−1),∴AB=,∵四边形ABCD是正方形,∴BC=AB=,设B(m,0),∴,∴m=−3(舍)或m=3,∴C(3,0),∴点B向右平移3个单位,再向上平移1个单位,∴点D是点A向右平移3个单位,再向上平移1个单位,∴点D(2,3),将点D的坐标代入反比例函数y=中,∴k=6故答案为:6.【点睛】本题主要考察反比例函数与一次函数的交点问题,解题突破口是确定出点A的坐标.18、4【解析】∵方程x²−4x+m=0有两个相等的实数根,∴△=b²−4ac=16−4m=0,解之得,m=4故本题答案为:4三、解答题(共78分)19、(1)y=﹣x2+4x;(2)P(2,2);(3)S△MOC最大值为.【分析】(1)C1、C2:y=ax2+bx开口大小相同、方向相反,则a=-1,将点A的坐标代入C2的表达式,即可求解;
(2)点A关于C2对称轴的对称点是点O(0,0),连接OC交函数C2的对称轴与点P,此时PA+PC的值最小,即可求解;
(3)S△MOC=MH×xC=(-x2+4x-x)=-x2+x,即可求解.【详解】(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),连接OC交函数C2的对称轴与点P,此时PA+PC的值最小为:线OC的长度;设OC所在直线方程为:将点O(0,0),C(3,3)带入方程,解得k=1,所以OC所在直线方程为:点P在函数C2的对称轴上,令x=2,带入直线方程得y=2,点P坐标为(2,2)(3)由(2)知OC所在直线的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),则MH=﹣x2+4x﹣x则S△MOC=S△MOH+S△MCH=MH×xC=(﹣x2+4x﹣x)=∵△MOC的面积是一个关于x的二次函数,且开口向下其顶点就是它的最大值。其对称轴为x==,此时y=S△MOC最大值为.【点睛】本题考查了待定系数法求解析式,还考查了三角形的面积,要注意将三角形分解成两个三角形求解;还要注意求最大值可以借助于二次函数.20、(1)见解析;(2);(3)【分析】(1)分别作出线段BC,线段AC的垂直平分线EF,MN交于点O,以O为圆心,OB为半径作⊙O即可.(2)连接OB,OC,作CH⊥AB于H.解直角三角形求出BC,即可解决问题.(3)利用扇形的面积公式计算即可.【详解】(1)如图⊙O即为所求.(2)连接OB,OC,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=1,∠A=60°,∴∠ACH=30°,∴AHAC=2,CHAH=2,∵AB=6,∴BH=1,∴BC2,∵∠BOC=2∠A=120°,OB=OC,OF⊥BC,∴BF=CF,∠COF∠BOC=60°,∴OC.(3)S扇形OBC.【点睛】本题考查了作图﹣复杂作图,勾股定理,解直角三角形,三角形的外接圆与外心等知识,解答本题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.21、(1)见详解;(2)①见详解;②120°【分析】教材呈现:证明△ADE∽△ABC即可解决问题.结论应用:(1)首先证明△ADE是等边三角形,推出AD=AE,BD=CE,再利用三角形的中位线定理即可证明.(2)利用三角形的中位线定理以及平行线的性质解决问题即可.【详解】教材呈现:证明:∵点D,E分别是AB,AC的中点,∴,∵∠A=∠A,∴△ADE∽△ABC,∴∠ADE=∠ABC,,∴DE∥BC,DE=BC.结论应用:(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵DE∥AB,∴∠ABC=∠ADE=60°,∠ACB=∠AED=60°,∴∠ADE=∠AED=60°,∴△ADE是等边三角形,∴AD=AE,∴BD=CE,∵EM=MD,EN=NB,∴MN=BD,∵BN=NE,BP=PC,∴PN=EC,∴NM=NP.(2)∵EM=MD,EN=NB,∴MN∥BD,∵BN=NE,BP=PC,∴PN∥EC,∴∠MNE∠ABE,∠PNE=∠AEB,∵∠AEB=∠EBC+∠C,∠ABC=∠C=60°,∴∠MNP=∠ABE+∠EBC+∠C=∠ABC+∠C=120°.【点睛】本题考查了三角形中位线定理,,平行线的性质、相似三角形的判定与性质,综合性较强,难度适中.熟练掌握各定理是解题的关键.22、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23、(1)证明见解析;(2)证明见解析;(3)24.【分析】(1)根据线段垂直平分线的性质即可得出答案;(2)先判定AECF是平行四边形,根据对角线垂直,即可得出答案;(3)根据勾股定理求出DE的值,根据“菱形的面积等于对角线乘积的一半”计算即可得出答案.【详解】(1)证明:由图可知,又∵,∴,∴;解:(2)由(1)知:∴四边形是平行四边形,又∵∴是菱形;(3)在中,∴;【点睛】本题考查的是菱形,难度适中,需要熟练掌握菱形的判定以及菱形面积的公式.24、(1)黄球有1个;(2);(3).【分析】(1)首先设口袋中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新农合同范本(2篇)
- 2024-2025公司管理人员安全培训考试试题及答案历年考题
- 2024-2025安全培训考试试题及答案突破训练
- 2024-2025新版车间安全培训考试试题有完整答案
- 2025药店的产品供应合同书
- 2025年电子用高纯气体项目合作计划书
- 2025年卫星传输服务项目建议书
- 2025年颜料红系列项目建议书
- 2025商业大厦屋顶花园承包合同
- 2025兼职会计聘用合同范本 证明格式
- 【部编版】语文五年级下册第五单元《交流平台 初试身手》精美课件
- 枇杷文化知识讲座
- 《小型局域网组建》课件
- 浙江伟锋药业有限公司年产100吨拉米夫定、50吨恩曲他滨、30吨卡培他滨技改项目环境影响报告
- 公路养护安全作业规程-四级公路养护作业控制区布置
- 了解生活中常见的乳化现象
- 八年级家长会领导讲话4篇
- 美世国际职位评估体系IPE3.0使用手册
- 焦虑抑郁患者护理课件
- 户外招牌安全承诺书
- JGT471-2015 建筑门窗幕墙用中空玻璃弹性密封胶
评论
0/150
提交评论