初中数学案例分析_第1页
初中数学案例分析_第2页
初中数学案例分析_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

锁定数学本质我们在进行《7.5.2—次函数的简单应用》这一教学内容设计时,我们尝试了两种不同的教学方法。方程组的解之间的关系,然后利用图象的交点让学生明白利用图象的简洁性,同时附带介绍近似解等概念,但在教学中我们发现:当我们需要将问题中的两个函数的图象画在同一个直角坐标系中时遇到了困难。为什么是s,=36t和S2=26t10这两个函数?下面是这教学片断的师生对话:师:这个问题我们能否用新的方法(数形结合)来解决。生:可以利用函数的图象。(部分学生回答)师:很好,若要利用函数的图象,我们首先需要知道什么?生:函数的解析式。师:那函数的解析式是怎样的?生1:q=36t和y2=26t。师:还有不同答案吗?生2:q=36t和s2=26t10师:为什么有两种不同的答案?我们需要的是哪一种?生:第二种。师:为什么?(全班学生迟疑了片刻,有几个好生举手发言了)生1:因为此两个函数要画在同一个直角坐标系中,它们的函数值y要相同;生2:它们两个人出发的时间相同;生3:……这个问题本身使部分学生感到比较难理解,而我们又想利用此两个函数的图象的交点让学生体会直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系,更是难上加难。因此,后来我们没有采用这种教学设计。教法二:以“数形结合”为引领,大胆改编教材的呈现模式,切合学生实际教学思路。我们先让学生了解一次函数和二元一次方程的关系,然后再利用“数形结合”的思想方法让学生体会直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系,让学生明白利用图象的简洁性。这样处理的好处是:既分解了本节课的难点,又为利用图象法解决例题埋下了伏笔。【案例分析与反思】教法一只是按照教材规定的内容进行教学,教学方法也比较传统,教学过程侧重于知识的落实,学生虽然参与了学习,但学习热情较为低落。可以说,教师基本上是在“教教材”,缺乏数学本质的体现。而教法二中,以数学思想为主线,设置问题串,让学生在不断的演练中体会到“数形结合”的优越性下面我就来谈谈我们是如何“挖掘教材内涵凸显数学本质”。一、分解教材内容,确定学习目标在磨课过程中,我们对教材的问题逐题加以分解,对照数学本质,确定学习目标为:会综合运用一次函数的解析式和图象解决简单实际问题;了解直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系;会用一次函数的图象求二元一次方程组的解(包括近似解)。二、结合数形结合的要求,选择教学素材1、一是创造性地处理教材教材中只用一个例题来解决本节课的重难点,我们觉得难度较大。所以我们先这样的一个等式y=x+1让学生了解一次函数和二元一次方程的关系,再让学生了解直角坐标系中两条直线(不平行于坐标轴)的交点坐标与由两条直线的函数解析式所组成的二元一次方程组的解之间的关系。2、创造开发生成性的教学素材在教学设计中,讲解例题时,当做出函数的图象时我们设计了这样一个问题:从图象中你还能了解到哪些信息?符合新课标的要求,不同的人在数学上得到不同的发展。三、运用数学思想解决问题,培养学生创新意识1、让学生经历数学知识的形成与应用过程。让学生经历数学知识的形成与应用过程,从而更好地解释数学知识的意义,掌握必要的基础知识与技能,发展应用数学知识的意义与能力,增强学好数学的愿望和信心。新教材为学生提供了大量的数学活动线索和丰富的数学活动机会,为学生的数学学习构筑起点。通过我们的再次讨论,发现我们这节课在这方面还体现的不够,没有回到函数的真正本质:一般地,在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x叫做自变量。2、构建“以问题为中心”的讨论式数学模式。通过教师创设情景,启发引导,经过学生自主探索、合作交流,引导学生主动地从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生掌握基本的数学知识与技能、数学思想和方法,使学生具有初步的创新精神和实践能力。“以问题为中心”的讨论式教学模式具体地说是由“问题情境、合作讨论、理性概况、应用创新、反思提高”五个环节组成的一种讨论式学习的教学模式。3、注重数学思想的运用,提高解决问题的能力。在教学的最后一个环节,我们设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论