




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章综合测试(A)(时间:
120分钟
满分:
150分)一、选择题
(本大题共
12个小题,每题
5分,共
60分,在每题给出的四个选项中,只有一项为哪一项吻合题目要求的
)1.若函数
f(x)=a,则
f(x2)=(
)A.a2
B.aC.x2
D.[答案]
B[剖析]∵f(x)=a,∴函数f(x)为常数函数,∴f(x2)=a,应选B.2.(2014~2015学年度XXXX四中高一上学期月考)已知函数f(x)=1的定义域为M,2-xg(x)=x+2的定义域为N,则M∩N=()A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}[答案]D[剖析]由题意得M={x|2-x>0}={x|x<2},N={x|x+2≥0}={x|x≥-2},∴M∩N{x|-2≤x<2}.3.在以下由M到N的对应中构成照射的是()[答案]C[剖析]选项A中,会集M中的数3在会集N中没有数与之对应,不满足照射的定义;选项B中,会集中的数3在会集N中有两个数、与之对应,选项D中,会集中的数MabMa在会集N中有两个数1、3与之对应不满足照射的定义,应选C.4.(2014~2015学年度XX南开中学高一上学期期中测试)已知f(x+1)=x+1,则函数f(x)的剖析式为()A.f(x)=x2B.f(x)=x2+1C.()=x2-2+2D.(x)=x2-2xfxxf[答案]C[剖析]令x+1=t≥1,∴x=(t-1)2,∴(t)=(t-1)2+1=t2-2+2ftf(x)=x2-2x+2(x≥1).5.(2014~2015学年度XXXX高一上学期期中测试)若f(x)=x2-2(-1)x+2在(-∞,a3]上是减函数,则实数a的取值X围是()A.a>4B.a<4C.≥4D.≤4aa[答案]D[剖析]函数f(x)的对称轴为x=a-1,由题意得a-1≥3,∴a≥4.6.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大体图象是()[答案]A[剖析]选项A图象为减函数,k<0,且在y轴上的截距为正,故b>0,满足条件.7.对于“二分法”求得的近似解,精确度ε说法正确的选项是()A.ε越大,零点的精确度越高B.ε越大,零点的精确度越低C.重复计算次数就是εD.重复计算次数与ε没关[答案]B[剖析]ε越小,零点的精确度越高;重复计算次数与ε有关.8.已知f(x)=-3x+2,则f(2x+1)=()A.-3+2B.-6-1xxC.2x+1D.-6x+5[答案]B[剖析]∵f(x)=-3x+2,f(2x+1)=-3(2x+1)+2=-6x-1.9.向高为H的水瓶中注水,注满为止,若是注水量V与水深h的函数关系的图象如图所示,那么水瓶的形状是()[答案]B[剖析]观察图象,依照图象的特点,发现取水深H1V022瓶高的一半时,实质注水量大于水瓶总容量的一半,1V01V0A中V<2,C,D中V=2,应选B.10.(2014~2015学年度潍坊四县市高一上学期期中测试
)定义在
R上的偶函数
f(x)满足:对任意的
x1、x2∈(-∞,
0](
x1≠x2),都有(x2-x1)[
f(x2)-f(x1)]>0
,则(
)A.f(-2)<f(1)<
f(3)
B.f(1)<
f(-2)<f(3)C.f(3)<
f(-2)<f(1)
D.f(3)<
f(1)<
f(-2)[答案]
C[剖析]
由题意知,函数
f(x)在(-∞,0]上是增函数,在
(0,+∞)上是减函数.又f(-2)=f(2)
,f(3)<f(-2)<f(1).11.定义两种运算:a⊕=ab,?=2+2,则f(x)=2⊕x为()bababx?2-2A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数[答案]A[剖析]∵⊕=,?=a2+b2,ababab∴f(x)=2⊕x2x2x,=22=2x?2-2x+2-2x+2∴在定义域R上,有2-x2xf(-x)=-x2+2=-x2+2=-f(x),∴f(x)为奇函数,应选A.12.(2014~2015学年度XXXX市金台区高一上学期期中测试)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使fx-f-x)x<0的x的取值X围为(A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)[答案]D[剖析]由f(x)为奇函数,fx-f-x2fx可知x=x<0.而f(1)=0,则f(-1)=-f(1)=0.当x>0时,f(x)<0=f(1);当x<0时,f(x)>0=f(-1).又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(-∞,0)上为增函数,所以0<x<1或-1<x<0.二、填空题(本大题共4个小题,每题4分,共16分,将正确答案填在题中横线上)13.(2014~2015学年度XX师X大学隶属第二中学高一上学期月考)函数y=x-1+x的定义域是______________.[答案][1,+∞)[剖析]由题意得x-1≥0,x≥0∴x≥1,故函数y=x-1+x的定义域为[1,+∞).14.在用二分法求方程3-2-1=0的一个近似根时,现在已经将根锁定在区间(1,2)xx内,则下一步能够判断根所在的区间为________.[答案][1.5,2][剖析]令f()=3-2x-1,(1.5)=1.53-2×1.5-1<0,(2)=23-2×2-1=3>0,xxff∴f(1.5)·f(2)<0,故能够判断根所在的区间为[1.5,2].15.函数f(x)=x2-+-3的一个零点是0,则另一个零点是________.mxm[答案]3[剖析]∵0是函数f(x)=x2-mx+m-3的一个零点,∴m-3=0,∴m=3.2∴f(x)=x-3x.得x=0或3.故函数f(x)的另一个零点是3.16.(2014~2015学年度XXXX中学高一上学期期中测试)已知函数f(x)=ax3+bx+1,且f(-a)=6,则f(a)=________.[答案]-4[剖析]f(-)=(-)3+(-)+1=-(4+)+1=6,aaabaaaba4+ab=-5.f(a)=a4+ab+1=-5+1=-4.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)(2014~2015学年度XX德阳五中高一上学期月考)设定义域为Rx+1x≤0的函数f(x)=2-2+1x>0.xx(1)在以下列图的平面直角坐标系内作出函数f(x)的图象,并写出函数f(x)的单调区间(不需证明);1求函数f(x)在区间-2,2上的最大值与最小值.[剖析](1)画出函数f(x)的图象以下列图.由图象可知,函数f(x)的单调递加区间为(-∞,0],[1,+∞);单调递减区间为[0,1].x+1-1≤≤02(2)f(x)=,x2-2x+10<≤2x11当-≤x≤0时,f(x)max=f(0)=1,f(x)min=,22当0<x≤2时,f(x)min=f(1)=0,f(x)max=f(2)=1,∴函数f(x)在区间-1,2上的最大值为1,最小值为0.218.(本小题满分12分)(2014~2015学年度XX省实验中学高一月考)用函数单调性定2义证明f(x)=x+x在x∈(0,2)上是减函数.[剖析]设任意x∈(0,2),x∈(0,2),且x<x.121222f(x2)-f(x1)=x2+x2-x1-x12x1-x2=(x2-x1)+(x2-x1)(1-2),2x1∵0<x1<x2<2,∴x2-x1>0,0<x2x1<2,∴1-2<0,x2x1∴(x2-x1)(1-2)<0,x2x1f(x2)<f(x1).即函数f(x)在(0,2)上是减函数.19.(本小题满分12分)已知函数f(x)=ax2-2ax+3-b(a>0)在区间[1,3]上有最大值5和最小值
2,求
a、b的值.[剖析]
依题意,
f(x)的对称轴为
x=1,函数
f(x)在[1,3]
上随着
x的增大而增大,故当
x=3时,该函数获取最大值,即
f(x)max=f(3)
=5,3a-b+3=5,当x=1时,该函数获取最小值,即
f(x)min=f(1)
=2,即-a-b+3=2,3a-b=2∴联立方程得
,-a-b=-13
1解得a=4,b=4.20.(本小题满分12分)(2014~2015学年度XX枣庄第八中学高一上学期期中测试)已知函数f(x)=x2+(2a-1)x-3.3当a=1时,求函数f(x)在[-2,2]上的最值;3(2)若函数
f(x)在[-2,2]上的最大值为
1,XX数
a的值.[剖析]
21(1)当a=1时,f(x)=x+x-3=(x+2)
2-
133,1
13∴当x=-2时,f(x)min=-3,当x=2时,f(x)max=3.1111(2)函数f(x)的对称轴为x=2-a,当2-a≤4,即a≥4时,1(x)max=f(2)=4a-1=1,∴a=2.111当2-a>4,即a<4时,331(x)max=f(-2)=4-3a=1,∴a=-12.1∴实数a的值为-12或2.21.(本小题满分12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为了激励销售商订购,决定每一次订购量高出100个时,每多订购一个,订购的全部零件的出厂单价就降0.02元,但实质出厂单价不能够低于51元.(1)当一次订购量为多个时,零件的实质出厂单价恰好为
51元?(2)当销售商一次订购
x个零件时,该厂获取的利润为
P元,写出
P=f(x)的表达式.[剖析]
(1)设每个零件的实质出厂价格恰好为
51元时,一次订购量为
x0个,则
60-0.02(
x0-100)=51,解得
x0=550,所以当一次订购量为
550个时,每个零件的实质出厂价恰好为
51元.(2)设一次订量为
x个时,零件的实质出厂单价为
W,工厂获取利润为
P,由题意
P=(W40)·x,当0<x≤100时,W=60;x当100<x<550时,W=60-0.02(x-100)=62-50;当x≥550时,W=51.当0<x≤100时,y=(60-40)x=20x;∴当100<x<550时,y=(22-x)x=22x-1x2;5050当x≥550时,y=(51-40)x=11x.20x0<≤100,x∈N+x故y=22+x2100<x<550,x∈N+.5011xx≥550,x∈N+22.(本小题满分14分)已知函数f(x)=x2-(k-2)x+k2+3k+5有两个零点.(1)若函数的两个零点是-1和-3,求k的值;(2)若函数的两个零点是x1和x2,求=12+22的取值X围.Txx[剖析](1)∵-1和-3是函数f(x)的两个零点,∴-1和-3是方程x2-(k-2)x+k2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 儿童沉浸式牙齿护理课件
- 2025版测绘企业保密协议范本下载
- 二零二五年度办公楼施工临时用电合同
- 二零二五年度智能办公设备维护与升级文员劳动合同
- 2025版汽车零部件样品采购与质量认证合同
- 2025年度特殊行业场所保安与风险防控服务合同
- 二零二五年度房屋租赁押金纠纷处理合同范本
- 2025版悬疑小说剧本定制与编剧服务合同协议
- 二零二五年车辆挂靠新能源推广服务合同书十
- 二零二五年度企业员工劳动合同变更必要性与实施细则
- 职业技术学院婴幼儿托育服务与管理专业人才培养方案
- 2025台州市椒江区辅警考试试卷真题
- 中学生零食消费情况调查与分析
- 国开本科《管理英语4》机考总题库及答案
- 软装行业竞品分析报告
- 公司收购公司协议书
- 基于移动端的互联网金融服务创新研究
- T∕CACM 024-2017 中医临床实践指南 穴位埋线减肥
- GB 45189-2025氰化物安全生产管理规范
- 新科粤版九年级上册初中化学全册课前预习单
- 2025-2030年中国抗菌肽行业发展状况及投资前景规划研究报告
评论
0/150
提交评论