




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的单调性函数的单调性
y246810O-2x84121620246210141822I问题1、观察某市一天24小时的气温变化图,说出气温在哪些时段内是逐步升高的或下降的?
问题2、怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?一、创设情境,提出问题y246810O-2x8412162024621014
y246810O-2x84121620246210141822I问题3、对于任意的t1、t2∈[4,18]时,当t1<t2时,是否都有f(t1)<f(t2)呢?二、探究发现建构概念y246810O-2x8412162024621014对区间I内x1,x2
,当x1<x2时,有f(x1)<f(x2)图象在区间I逐渐上升?OxIy区间I内随着x的增大,y也增大x1x2f(x1)f(x2)MN对区间I内x1,x2,图象在区间I逐渐上对区间I内x1,x2
,当x1<x2时,有f(x1)<f(x2)xx1x2?Iyf(x1)f(x2)OMN任意区间I内随着x的增大,y也增大图象在区间I逐渐上升对区间I内x1,x2,xx1x2?Iyf对区间I内x1,x2
,当x1<x2时,有f(x1)<f(x2)xx1x2都yf(x1)f(x2)O设函数y=f(x)的定义域为A,区间IA.如果对于区间I上的任意当x1<x2时,都有f(x1)f(x2),<定义MN任意两个自变量的值x1,x2,
I称为f(x)的单调增区间.那么就说f(x)在区间I上是单调增函数,区间I内随着x的增大,y也增大图象在区间I逐渐上升I对区间I内x1,x2,xx1x2都yf(那么就说在f(x)这个区间上是单调减函数,I称为f(x)的单调减区间.Oxyx1x2f(x1)f(x2)问题4、类比单调增函数概念,你能给出单调减函数的概念吗?xOyx1x2f(x1)f(x2)设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,那么就说在f(x)这个区间上是单调增
函数,I称为f(x)的单调区间.增当x1<x2时,都有f(x1)f(x2),<当x1<x2时,都有f(x1)f(x2),<>单调区间那么就说在f(x)这个区间上是单调Oxyx1x2f(x1(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性。在单调区间上,增函数的图象是上升的,减函数的图象是下降的。注意:判断1:函数f(x)=x2在是单调增函数;xyo(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性。在单调区间上,增函数的图象是上升的,减函数的图象是下降的。注意:判断2:定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)在R上是增函数;(3)x1,x2取值的任意性yxO12f(1)f(2)(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)
y246810O-2x84121620246210141822I问题6、类似气温图,你还能举出生活中的一些例子吗?问题7、你能说出你学过的函数的单调区间吗?请举例说明三、自我尝试运用概念
问题5、你能找出气温图中的单调区间吗?y246810O-2x8412162024621014例1、下图为函数,的图像,指出它的单调区间。123-2-3-2-1123456
7xo-4-1y-1.5[-1.5,3],[5,6][-4,-1.5],[3,5],[6,7]解:单调增区间为单调减区间为例1、下图为函数,例2.画出下列函数图像,并写出单调区间:数缺形时少直观xy_____________,讨论1:根据函数单调性的定义,
2试讨论在和上的单调性??例2.画出下列函数图像,并写出单调区间:数缺形时少直观xy_变式2:讨论的单调性成果交流变式1:讨论的单调性xyy=-x2+21-1122-1-2-2_______;_______.例2.画出下列函数图像,并写出单调区间:变式2:讨论例3、证明函数在区间上是单调增函数1.任取x1,x2∈D,且x1<x2;2.作差f(x1)-f(x2);3.变形(通常是因式分解和配方);4.定号(即判断差f(x1)-f(x2)的正负);5.下结论主要步骤例3、证明函数在
小结1.函数单调性的定义中有哪些关键点?2.判断函数单调性有哪些常用方法?3.你学会了哪些数学思想方法?四、回顾反思深化概念1.完成P37第7题2.完成P37第5,6题五、课堂小结小结四、3、证明函数f(x)=-x2在上是减函数。4、证明函数f(x)=在上是单调递减的。1、阅读教材p34-35例22.书面作业:教材P43
1、7、11六、作业布置3、证明函数f(x)=-x2在数与形,本是相倚依,焉能分作两边飞;数无形时少直觉,形少数时难入微;数形结合百般好,隔离分家万事休;切莫忘,几何代数统一体,永远联系莫分离.
——华罗庚谢谢指导!数与形,本是相倚依,谢谢指导!函数的单调性函数的单调性
y246810O-2x84121620246210141822I问题1、观察某市一天24小时的气温变化图,说出气温在哪些时段内是逐步升高的或下降的?
问题2、怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?一、创设情境,提出问题y246810O-2x8412162024621014
y246810O-2x84121620246210141822I问题3、对于任意的t1、t2∈[4,18]时,当t1<t2时,是否都有f(t1)<f(t2)呢?二、探究发现建构概念y246810O-2x8412162024621014对区间I内x1,x2
,当x1<x2时,有f(x1)<f(x2)图象在区间I逐渐上升?OxIy区间I内随着x的增大,y也增大x1x2f(x1)f(x2)MN对区间I内x1,x2,图象在区间I逐渐上对区间I内x1,x2
,当x1<x2时,有f(x1)<f(x2)xx1x2?Iyf(x1)f(x2)OMN任意区间I内随着x的增大,y也增大图象在区间I逐渐上升对区间I内x1,x2,xx1x2?Iyf对区间I内x1,x2
,当x1<x2时,有f(x1)<f(x2)xx1x2都yf(x1)f(x2)O设函数y=f(x)的定义域为A,区间IA.如果对于区间I上的任意当x1<x2时,都有f(x1)f(x2),<定义MN任意两个自变量的值x1,x2,
I称为f(x)的单调增区间.那么就说f(x)在区间I上是单调增函数,区间I内随着x的增大,y也增大图象在区间I逐渐上升I对区间I内x1,x2,xx1x2都yf(那么就说在f(x)这个区间上是单调减函数,I称为f(x)的单调减区间.Oxyx1x2f(x1)f(x2)问题4、类比单调增函数概念,你能给出单调减函数的概念吗?xOyx1x2f(x1)f(x2)设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,设函数y=f(x)的定义域为A,区间IA.如果对于属于定义域A内某个区间I上的任意两个自变量的值x1,x2,那么就说在f(x)这个区间上是单调增
函数,I称为f(x)的单调区间.增当x1<x2时,都有f(x1)f(x2),<当x1<x2时,都有f(x1)f(x2),<>单调区间那么就说在f(x)这个区间上是单调Oxyx1x2f(x1(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性。在单调区间上,增函数的图象是上升的,减函数的图象是下降的。注意:判断1:函数f(x)=x2在是单调增函数;xyo(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)如果函数y=f(x)在区间I是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性。在单调区间上,增函数的图象是上升的,减函数的图象是下降的。注意:判断2:定义在R上的函数f(x)满足f(2)>f(1),则函数f(x)在R上是增函数;(3)x1,x2取值的任意性yxO12f(1)f(2)(2)函数单调性是针对某个区间而言的,是一个局部性质;(1)
y246810O-2x84121620246210141822I问题6、类似气温图,你还能举出生活中的一些例子吗?问题7、你能说出你学过的函数的单调区间吗?请举例说明三、自我尝试运用概念
问题5、你能找出气温图中的单调区间吗?y246810O-2x8412162024621014例1、下图为函数,的图像,指出它的单调区间。123-2-3-2-1123456
7xo-4-1y-1.5[-1.5,3],[5,6][-4,-1.5],[3,5],[6,7]解:单调增区间为单调减区间为例1、下图为函数,例2.画出下列函数图像,并写出单调区间:数缺形时少直观xy_____________,讨论1:根据函数单调性的定义,
2试讨论在和上的单调性??例2.画出下列函数图像,并写出单调区间:数缺形时少直观xy_变式2:讨论的单调性成果交流变式1:讨论的单调性xyy=-x2+21-1122-1-2-2_______;_______.例2.画出下列函数图像,并写出单调区间:变式2:讨论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院应急预案范文(20篇)
- 2025年工业互联网平台量子通信技术在智能家居通信领域的应用预研报告
- 2025年文化娱乐产业政策环境与产业发展趋势研究报告
- 2025年社区团购市场用户留存与社区团购平台用户活跃度提升策略研究报告
- 江西省部分学校2025-2026学年高三上学期8月百万大联考化学试题(含答案)
- 广东省汕尾市陆河县河城中学2024-2025学年上学期九年级10月月考英语试题(含答案无听力原文及音频)
- 班主任工作例会上校长重要讲话:新学期班主任请把这“三件事”和“一条线”放在心上
- 应对焦虑的课件教学
- 巡道工安全培训教案课件
- 岩石圈的物质循环
- 2025年度哈尔滨市平房区纪委监委公开招聘雇员2人考试参考题库及答案解析
- 2025年江西省高考化学试卷真题(含答案)
- 2025年征地拆迁考试题及答案
- 巡游出租车考试题及答案
- 2025年秋季学期人教版三年级上册数学教学计划含教学进度表(三篇)
- 2025至2030中国方竹笋市场经营方向与竞争格局分析报告
- 2025年人教版三年级数学上册《混合运算》教案
- 2025医用眼科器械消毒处理标准流程
- 胸部穿刺教学课件
- 2025-2026学年苏教版(2024)小学科学三年级上册(全册)课时练习及答案(附目录P102)
- 2025苏教版三年级上册数学教学计划 (三篇)
评论
0/150
提交评论