




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
GEOTECHNICAL
ENGINEERING:NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WINDTURBINE
FOUNDATION敦樸文化()GEOTECHNICAL
ENGINEERING:NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATIONMOTIVATIONSOURCES
OF
NONLINEARITYSTRUCTUREMATERIALUPLIFTINGLOAD
CYCLESMETHODOLOGYCLASSICAL
-YTICAL
METHODK
SUBGRADE
REACTION
METHOD3D
FULLY
MEF
–
MC
&
HSSMYSIS
CASEINFLUENCE
OFUPLIFTINFLUECE
OF
FOOTING
STIFFNESINFLUECE
OF
PLASTIC
STRAINSADVANCEDCONSTITUTIVE
MODELS:
HSSMCYCLIC
LOADING
(HSSS)BEN
ARKFURTHER
ADVANCED
CAPACITIES:
STRUCTURAL
NONLINEARITIESCONCLUSIONSGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()MOTIVATION
(I)um
powerSource:
Design
and
construction
of
wind
turbine
towers
forgeneration.
University
of
Windsor
(2016)INCREASING
TOWER
HEIGHT
(>150m)HIGHER
INFLUENCEOF
THE
FOUNDATIONIN
THE
TOWERDESIGN-
FOUNDATION
FLEXIBILITY-SOIL
–
STRUCTUREINTERACTIONGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()um
power
generation.Source:
Design
and
construction
ofwind
turbine
towers
forUniversity
of
Windsor
(2016)MOTIVATION
(II)TOWER
DESIGN
–
Campbell
diagram
(
r)Eigenfrequencies
related
to
excitations
(natural
frequency
(Hz)/
rotor
speed
(rpm))Beforehard
designTall
towerssoft
designNatural
frequencieslimits
±10%DOES
OUR
FOUNDATIONSTIFFNESS
ESTIMATIONHAVE
TH CURACY
???GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()AIM
&SCOPEAIMImprove
the
prediction
of
the
foundation
stiffness
estimationEvaluate
the
influence
of
different
non
linearitiesSCOPEShallow
foundationCircular
shapeDrained
condition
terrainGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()SOIL-STRUCTUREINTERACTIONSOURCES
OF
NON
LINEARITIESSTIFFNESS-
RIGIDCRACKED-STRUCTURALFLEXIBILITYNON
LINEARMATERIALGEOTECHNICALCYCLICLOADINGSOILPLASTICITYGEOTECHNICALUPLIFTGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()METHODOLOGYCLASSICALAPPROACHyticalexpresionsK
MODULUS
OFSUBGRADEREACTION3D
FEM
&
SpringelementsFULLY
3D
FEMSolid
and
interfaceelementsNonlinearitiesGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()vBased
on ytical
expressions.Standard
and
GuidesVariables:G:
Equivalent
dynamic
shear
modulusν:Poisson’s
ratioFoundation
geometryPros:Simple
and
fastDirect
measurement
of
soil
parameterCons:Rigid
foundation
(v/h
<
2)
(≈15-17m)Elastic
soil
behaviourNo
uplift
of
foundationLACK
OF
ACCURACY
IN
BIG
FOUNDATIONShCLASSICAL
APPROACH:YTICAL
METHODSDNVGL-ST-0126
Support
structures
for
wind
turbines)GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()K
MODULUS
OF
SUBGRADE
REACTION:
3D
FEM
Spring
elementsSpring
boundary
elements
based
onsubgrade
reaction
modulus.FEM
Models
–
s /solid
elements.Variables:Kv:
Modulus
of
subgradereactionFoundation
geometry
andstiffnessPros:Foundation
lifting
(gap)Non
linear
behaviour(springs)Low
computationalcost
(fast)Cons:Subgrade
reaction
modulus obtained
by
correlationsNo
direct
parameter
measurementScale
effectson
testsNEED
TO
CALIBRATE
THE
MODELWHY
NOT
A
FULLY
3D
MODEL
??GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()FULLY
3D:
FEM
SOLID
&
INTERFACE
ELEMENTS
(I)Based
on
solid
FEM
models
with
interfaceelementsand
soil
constitutive
laws.Variables:Soil
strength
parameters:
c
,
φ,
ψ,
emaxSoil
deformability
parameters:
Edyn,
νFoundation
deformability
parameters:
EcPros:Direct
measurement
of
soil
parametersAll
soil
rangesGeneral
foundation
geometryConstruction
stagesCons:More
computationalcostMore
engineering
hoursGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()FULLY3D:
FEM
SOLID
&
INTERFACE
ELEMENTS
(II)
-
CONSTITUTIVE
LAWSMohr
Coulomb
(MC)Elastic-
perfectly
plastic
soil
behaviour
modelSoil
strength
parameters:
c
,
φ,
ψ,
emaxSoil
deformability
parameters:
Edyn,
νFoundation
deformability
parameters:
EcHardeningSoil
Small
Strain(HSSS)Nonlinear
stress-strain
relation
(Hardin-Drnevich)Soil
strength
parameters:
c
,
φ,
ψ,
emaxSmall
strain
stiffness:
E0,
γ0.7Elasticcharacteristics:vur,
Eur,
E50,
mCap,
load
history:
Eoed,
OCR,
K0(NC)Cons:More
geotechnical
testing
neededCons:Constant
load-
reload
modulus
(E)E
modulus
should
be
adjusted
tothe
operational
range
you
expectBetter
adjust
with
sands
soilsGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()METHODOLOGY
COMPARISONCLASSICAL
APPROACHytical
expresionsMODULUS
OF
SUBGRADEREACTION3D
FEM
Spring
elementsFULLY
3D
FEMSolid
and
interface
elementsNon
linearitiesGAP-
UpliftFoundation
stiffnessSoilplasticityCyclic
loadingMohr
CoulombHardeningSoilSmall
StrainSOIL
CONSTITUTIVE
LAWGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()METHODOLOGY
COMPARISONCLASSICAL
APPROACHytical
expresionsMODULUS
OF
SUBGRADEREACTION3D
FEM
Spring
elementsFULLY
3D
FEMSolid
and
interface
elementsNon
linearitiesCons
MC:Constant
load-
reload
modulus
(E)·E
modulus
should
be
adjusted
tothe
operational
range
you
expectBetter
with
sands·Direct
measurement
of
soilparametersAll
soil
rangesGeneral
foundationgeometryConstruction
stagesSubgrade
reaction
modulusobtained
by
correlationsNo
direct
parameter
measurementScale
effects
on
testsNEED
TO
CALIBRATE
THEMODELWHY
NOT
A
FULLY
3D
MODEL
??Foundation
uplift
(gap)·Non
linear
behaviour(springs)Low
computational
cost
(fast)·
Simple
and
fast·Direct
measurement
of
soilparameters·Rigid
foundation
(v/h
<
2)(≈15-17m)Elastic
soil
behaviourNo
liftingof
foundationLACK
OF
ACCURACY
IN
BIGFOUNDATIONSPROSCONSGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()YSIS
CASE
-
PROBLEM
DESCRIPTIONTypical
wind
turbine
foundationMaterials:ConcreteE.rigid
=
InfinitestiffnessE.secantFULLY
3D
MODELSUBGRADE
REACTION
MODULUSYTICALGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()INFLUENCE
OF
UPLIFTGAP/UPLIFTFOUND.
STIFFNESSEFFECTSK.r
%GAP
/
UPLIFT-15%FOUNDATIONSTIFNESS-20%UPLIFT+STIFF-32%SUBGRADE
REACTION
MODULUSYTICALGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()AN
v.s
3D
MChard
soilK.r
%GAP
/
UPLIFT-5%FOUNDATIONSTIFNESS-37%UPLIFT+STIFF-40%FULLY
3D
MODELSUBGRADE
REACTION
MODULUSYTICALSpring
vs
3DMCK.r
%GAP
/
UPLIFT-10%FOUNDATIONSTIFNESS+10%INFLUENCE
OF
FOOTING
STIFFNESS
(I)MOHR
COULOMBHard
soilØ=45
c=10kPaNo
phreatic
levelGAP/UPLIFTFOUND.
STIFFNESSMOHR
COULOMBGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()INFLUENCE
OF
FOOTING
STIFFNESS
(II)rigidelasticSUBGRADE
REACTION
MODULUSGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()INFLUENCE
OF
FOOTING
STIFFNESS
(III)FULLY
3D
MODELGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()MC
hardv.smedium
soilK.r
%Plasticstrain-
Found
Rigid-17%Plasticstrain-FoundElastic-9%FULLY
3D
MODELYTICALMOHR
COULOMBHard
soilØ=45
c=10kPaMedium
soilØ=30
c=0.1kPaNo
phreatic
levelFOUND.
STIFFNESSINFLUENCE
OFPLASTIC
STRAINS
(I)GAP/UPLIFTR-hardAN
v.s
MCmedium
soilK.r
%GAP
/
UPLIFT-22%FOUNDATIONSTIFNESS-30%UPLIFT+STIFF-45%R-medF-hardF-medAN
v.s
3D
MChard
soilK.r
%GAP
/
UPLIFT-5%FOUNDATIONSTIFNESS-37%UPLIFT+STIFF-40%GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()INFLUENCE
OFPLASTIC
STRAINS
(II)GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()INFLUENCE
OFPLASTIC
STRAINS
(III)GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()FULLY
3DMODELADVANCED
CONSTITUTIVE
MODELS:
HSSM
(I)GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()ADVANCED
CONSTITUTIVE
MODELS:
HSSM
(II)GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()CYCLIC
LOADING:
HARDENING
SOIL
SMALL
STRAIN
(HSSS)Second
looploadingreloadingunloadingThird
loopInitial/
loopWHAT
ABOUTCYCLIC
LOADING
?Model
independent
of
theoperational
rangeIn
a
single
model
we
have
all
theoperational
range
:
initial,service,
al…All
soil
layersGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()ADVANCED
CONSTITUTIVE
MODELS
(HS-SMALL
STRAIN):
BEN ARK
(I)REAL
LARGE
SCALE
TEST:
“Large-Scale
LoadTestand
Data
Base
of
Spread
Footings
on
Sand”Publication
NO.
FHWA-RD-97-068.
U.S
Department
of
TransportationThefoundation
3.0
x
3.0
m
footingloaded.Texas
A&M
University’s
National
Geotechnical
Experimental
Site.HOW
ACCURA Y
CYCLIC
LOADING
CAN
BE
PREDICTED
?GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()ADVANCED
CONSTITUTIVE
MODELS
(HS-SMALL
STRAIN):
BENARK
(II)GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()ADVANCED
CONSTITUTIVE
MODELS
(HS-SMALL
STRAIN):
BENARK
(II)SimulationReal
testGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()FURTHERADVANCEDCAPACITIES:
STRUCTURAL
NONLINEARITIES
(I)FOUNDATION
PART
FEM
MODEL
DETAILS
-REINFORCEMENTSMODEL
SIZE:
STRUCTURAL
PARTSolid
elementsEmbedded
reinfoNodes373392382960920FEATURESTotal
strain
crack
modelElasto-plastic
embedded
reinfoPretensioned
anchor
barsInterface
tower
bottom/
foundationGE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()Not
so
important
for
stiffness10%Remarkable
influence
in
reinfoties
optimizationFURTHERADVANCED
CAPACITIES:
STRUCTURAL
NONLINEARITIES
(II)GE:
NONLINEAR
3D
SOIL-STRUCTURE-INTERACTION
OF
WIND
TURBINE
FOUNDATION敦樸文化()CONCLUSIONSF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论