




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学专题圆的切线中考数学专题圆的切线中考数学专题圆的切线中考数学专题圆的切线编制仅供参考审核批准生效日期地址:电话:传真:邮编:中考数学专题圆的位置关系第一部分真题精讲【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tanC=,求⊙O的直径.【例2】已知:如图,⊙O为的外接圆,为⊙O的直径,作射线,使得平分,过点作于点.(1)求证:为⊙O的切线;(2)若,,求⊙O的半径.【例3】已知:如图,点是⊙的直径延长线上一点,点在⊙上,且(1)求证:是⊙的切线;(2)若点是劣弧上一点,与相交于点,且,,求⊙的半径长.【例4】如图,等腰三角形中,,.以为直径作⊙O交于点,交于点,,垂足为,交的延长线于点.(1)求证:直线是⊙O的切线;(2)求的值.【例5】如图,平行四边形ABCD中,以A为圆心,AB为半径的圆交AD于F,交BC于G,延长BA交圆于E.(1)若ED与⊙A相切,试判断GD与⊙A的位置关系,并证明你的结论;(2)在(1)的条件不变的情况下,若GC=CD=5,求AD的长.第二部分发散思考【思考1】如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.【思路分析】此题为去年海淀一模题,虽然较为简单,但是统计下来得分率却很低.因为题目中没有给出有关圆心的任何线段,所以就需要考生自己去构造。同一段弧的圆周角相等这一性质是非常重要的,延长DB就会得到一个和C一样的圆周角,利用角度关系,就很容易证明了。第二问考解三角形的计算问题,利用相等的角建立相等的比例关系,从而求解。【思考2】已知:AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若⊙O的半径等于4,,求CD的长.【思路分析】本题也是非常典型的通过角度变换来证明90°的题目。重点在于如何利用∠D=∠ACB这个条件,去将他们放在RT三角形中找出相等,互余等关系。尤其是将∠OBD拆分成两个角去证明和为90°。【思考3】已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,cosC=时,求⊙O的半径.【思路分析】这是一道去年北京中考的原题,有些同学可能已经做过了。主要考点还是切线判定,等腰三角形性质以及解直角三角形,也不会很难。放这里的原因是让大家感受一下中考题也无非就是如此出法,和我们前面看到的那些题是一个意思。【思考4】如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为上一点,CE⊥AD于E.求证:AE=BD+DE.【思路分析】前面的题目大多是有关切线问题,但是未必所有的圆问题都和切线有关,去年西城区这道模拟题就是无切线问题的代表。此题的关键在于如何在图形中找到和BD相等的量来达到转化的目的。如果图形中所有线段现成的没有,那么就需要自己去截一段,然后去找相似或者全等三角形中的线段关系。【思考5】如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD交DC的延长线于E,CF⊥AB于F,且CE=CF.求证:DE是⊙O的切线;若AB=6,BD=3,求AE和BC的长.【思路分析】又是一道非常典型的用角证平行的题目。题目中虽未给出AC评分角EAD这样的条件,但是通过给定CE=CF,加上有一个公共边,那么很容易发现△EAC和△CAF是全等的。于是问题迎刃而解。第二问中依然要注意找到已知线段的等量线段,并且利用和,差等关系去转化。第三部分思考题解析【思考1解析】1)证明:如图,连接AO并延长交⊙O于点E,连接BE,则∠ABE=90°.∴∠EAB+∠E=90°.∵∠E=∠C,∠C=∠BAD,∴∠EAB+∠BAD=90°.∴AD是⊙O的切线.(2)解:由(1)可知∠ABE=90°.∵AE=2AO=6,AB=4,∴.∵∠E=∠C=∠BAD,BD⊥AB,∴∴∴.【思考2解析】解:(1)直线BD与⊙O相切.证明:如图3,连结OB.-∵∠OCB=∠CBD+∠D,∠1=∠D,∴∠2=∠CBD.∵AB∥OC,∴∠2=∠A.∴∠A=∠CBD.∵OB=OC,∴,∵, ∴.∴.∴∠OBD=90°.∴直线BD与⊙O相切.(2)解:∵∠D=∠ACB,,∴.在Rt△OBD中,∠OBD=90°,OB=4,,∴,.∴.【思考3解析】OBGECMAOBGECMAF123∴.∵平分.∴.∴.∴.∴.在中,,是角平分线,∴.∴.∴.∴.∴与相切.(2)解:在中,,是角平分线,∴.∵,∴.在中,,∴.设的半径为,则.∵,∴.∴.∴.解得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力工程基坑施工方案
- 2025年贵州省遴选面试真题及答案大全解析
- 新能源行业品牌忠诚度提升策略:2025年技术创新与市场战略报告
- 2025-2032年中国新能源汽车整车轻量化技术创新路径报告
- 鹿邑农商银行安全培训课件
- 绿色工艺创新-第2篇-洞察与解读
- 考研学习内部资料(3篇)
- 本科社会试题及答案
- 安全用电教育题库及答案解析
- 母婴师护理常识题库大全及答案解析
- 2025年学校少先队知识应知应会题库(含答案)
- 2026中国农业银行秋季校园招聘备考考试题库附答案解析
- 核桃肽粉生产技术规程(征求意见稿)编制说明
- 《储能技术》课件-3.各种类型的蓄能技术
- (2025)企业首席质量官培训考核试题(附含答案)
- 工业厂区场地平整建设方案
- 2024年丽水市莲都区事业单位招聘真题
- 锂电池pack工厂安全培训课件
- (2025秋新版)青岛版科学三年级上册全册教案
- 跨境电商合规管理操作手册
- 住院病人防止走失课件
评论
0/150
提交评论