




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题解答(第1章)习题解答(第1章)习题解答(第1章)习题解答(第1章)编制仅供参考审核批准生效日期地址:电话:传真:邮编:第1章习题答案三、解答题1.设P(AB)=0,则下列说法哪些是正确的(1)A和B不相容;(2)A和B相容;(3)AB是不可能事件;(4)AB不一定是不可能事件;(5)P(A)=0或P(B)=0(6)P(A–B)=P(A)解:(4)(6)正确.2.设A,B是两事件,且P(A)=,P(B)=,问:(1)在什么条件下P(AB)取到最大值,最大值是多少(2)在什么条件下P(AB)取到最小值,最小值是多少解:因为,又因为即所以(1)当时P(AB)取到最大值,最大值是=. (2)时P(AB)取到最小值,最小值是P(AB)=+=.3.已知事件A,B满足,记P(A)=p,试求P(B).解:因为,即,所以 4.已知P(A)=,P(A–B)=,试求.解:因为P(A–B)=,所以P(A)–P(AB)=,P(AB)=P(A)–,又因为P(A)=,所以P(AB)=–=,.5.从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少解:显然总取法有种,以下求至少有两只配成一双的取法:法一:分两种情况考虑:+其中:为恰有1双配对的方法数法二:分两种情况考虑:+其中:为恰有1双配对的方法数,恰有2双配对的方法数法三:分两种情况考虑:+其中:为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:-法五:考虑对立事件:-其中:为没有一双配对的方法数法六:考虑对立事件:其中:为没有一双配对的方法数所求概率为 6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求:(1)求最小号码为5的概率;(2)求最大号码为5的概率.解:(1)法一:,法二:(2)法二:,法二:7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率.解:设M1,M2,M3表示杯子中球的最大个数分别为1,2,3的事件,则 ,,8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M2,M1,M0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则,,9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M1=“取到两个球颜色相同”,M1=“取到两个球均为白球”,M2=“取到两个球均为黑球”,则.所以10.若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x和y表示任取两个数,在平面上建立xOy直角坐标系,如图.任取两个数的所有结果构成样本空间={(x,y):0x,y1}事件A=“两数之和小于6/5”={(x,y):x+y6/5}因此.图 11.随机地向半圆(为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与轴的夹角小于的概率.解:这是一个几何概型问题.以x和y表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与轴的夹角,在平面上建立xOy直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间={(x,y):}事件A=“原点和该点的连线与轴的夹角小于”={(x,y):}因此.12.已知,求.解:13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。设A=“所取两件产品中至少有一件是不合格品”,B=“两件均为不合格品”;,,14.有两个箱子,第1箱子有3个白球2个红球,第2个箱子有4个白球4个红球,现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出一个球,此球是白球的概率是多少已知上述从第2个箱子中取出的球是白球,则从第1个箱子中取出的球是白球的概率是多少解:设A=“从第1个箱子中取出的1个球是白球”,B=“从第2个箱子中取出的1个球是白球”,则,由全概率公式得由贝叶斯公式得15.将两信息分别编码为A和B传递出去,接收站收到时,A被误收作B的概率为,而B被误收作A的概率为,信息A与信息B传送的频繁程度为2:1,若接收站收到的信息是A,问原发信息是A的概率是多少解:设M=“原发信息是A”,N=“接收到的信息是A”,已知所以由贝叶斯公式得16.三人独立地去破译一份密码,已知各人能译出的概率分别为,问三人中至少有一人能将此密码译出的概率是多少解:设Ai=“第i个人能破译密码”,i=1,2,3.已知所以至少有一人能将此密码译出的概率为17.设事件A与B相互独立,已知P(A)=,P(A∪B)=,求.解:由于A与B相互独立,所以P(AB)=P(A)P(B),且P(A∪B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B)将P(A)=,P(A∪B)=代入上式解得P(B)=,由于A与B相互独立,所以A与相互独立,所以18.甲乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率是多少解:设A=“甲命中目标”,B=“乙命中目标”,M=“目标被命中”,已知P(A)=,P(B)=.由于甲乙两人是独立射击目标.所以19.某零件用两种工艺加工,第一种工艺有三道工序,各道工序出现不合格品的概率分别为,,;第二种工艺有两道工序,各道工序出现不合格品的概率分别为,,试问:(1)用哪种工艺加工得到合格品的概率较大些(2)第二种工艺两道工序出现不合格品的概率都是时,情况又如何解:设Ai=“第1种工艺的第i道工序出现合格品”,i=1,2,3;Bi=“第2种工艺的第i道工序出现合格品”,i=1,2.(1)根据题意,P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,第一种工艺加工得到合格品的概率为P(A1A2A3)=P(A1)P(A2)P(A3第二种工艺加工得到合格品的概率为P(B1B2)=P(B1)P(B2)=可见第二种工艺加工得到合格品的概率大。(2)根据题意,第一种工艺加工得到合格品的概率仍为,而P(B1)=P(B2)=,第二种工艺加工得到合格品的概率为P(B1B2)=P(B1)P(B2)=可见第一种工艺加工得到合格品的概率大。(B)1.设两两相互独立的三事件A,B和C满足条件ABC=,且已知,求P(A).解:因为ABC=,所以P(ABC)=0,因为A,B,C两两相互独立,所以由加法公式得即考虑到得2.设事件A,B,C的概率都是,且,证明:.证明:因为,所以将代入上式得到整理得3.设0<P(A)<1,0<P(B)<1,P(A|B)+,试证A与B独立.证明:因为P(A|B)+,所以将代入上式得两边同乘非零的P(B)[1-P(B)]并整理得到所以A与B独立.4.设A,B是任意两事件,其中A的概率不等于0和1,证明是事件A与B独立的充分必要条件.证明:充分性,由于,所以即两边同乘非零的P(A)[1-P(A)]并整理得到所以A与B独立.必要性:由于A与B独立,即且所以一方面另一方面所以5.一学生接连参加同一课程的两次考试.第一次及格的概率为p,若第一次及格则第二次及格的概率也为p;若第一次不及格则第二次及格的概率为.(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率.(2)若已知他第二次及格了,求他第第一次及格的概率.解:设Ai=“第i次及格”,i=1,2.已知由全概率公式得(1)他取得该资格的概率为(2)若已知他第二次及格了,他第一次及格的概率为6.每箱产品有10件,其中次品从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品为不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.求检验一箱产品能通过验收的概率.解:设Ai=“一箱产品有i件次品”,i=0,1,2.设M=“一件产品为正品”,N=“一件产品被检验为正品”.已知由全概率公式又由全概率公式得一箱产品能通过验收的概率为7.用一种检验法检验产品中是否含有某种杂质的效果如下.若真含有杂质检验结果为含有的概率为;若真含不有杂质检验结果为不含有的概率为;据以往的资料知一产品真含有杂质或真不含有杂质的概率分别为和.今独立地对一产品进行三次检验,结果是两次检验认为含有杂质,而有一次认为不含有杂质,求此产品真含有杂质的概率.解:A=“一产品真含有杂质”,Bi=“对一产品进行第i次检验认为含有杂质”,i=1,2,3.已知独立进行的三次检验中两次认为含有杂质,一次认为不含有杂质,不妨假设前两次检验认为含有杂质,第三次认为检验不含有杂质,即B1,B2发生了,而B3未发生.又知所以所求概率为由于三次检验是独立进行的,所以8.火炮与坦克对战,假设坦克与火炮依次发射,且由火炮先射击,并允许火炮与坦克各发射2发,已知火炮与坦克每次发射的命中概率不变,它们分别等于和.我们规定只要命中就被击毁.试问(1)火炮与坦克被击毁的概率各等于多少(2)都不被击毁的概率等于多少解:设Ai=“第i次射击目标被击毁”,i=1,2,3,4.已知所以(1)火炮被击毁的概率为坦克被击毁的概率为(2)都不被击毁的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大屏幕租赁协议书
- 撤回投资款协议书
- 情侣签婚前协议书
- 采购抽粪车协议书
- 生物降解电磁屏蔽织物行业跨境出海项目商业计划书
- 廉洁及保密协议书
- 农林牧渔业产品零售行业跨境出海项目商业计划书
- 互联网票据融资行业深度调研及发展项目商业计划书
- 社保代补缴协议书
- 柏拉图的理想国
- (高清版)DZT 0319-2018 冶金行业绿色矿山建设规范
- 体检中心医护培训课件
- 2024年中国人保财险全系统陕西分公司招聘笔试参考题库含答案解析
- 医院培训课件:《护患沟通技巧》
- 空调风道改造技术方案
- 前悬挂整秆式甘蔗收割机双刀盘切割与喂入装置设计与试验的中期报告
- 《林业科普知识》课件
- 国开电大操作系统-Linux系统使用-实验报告
- 《小学生C++创意编程》第3单元课件 选择结构
- 《古代的村落、集镇和城市》统编版161
- KROHNE 转子流量计产品介绍 2022
评论
0/150
提交评论