2023年上海市高境第一中学高考仿真模拟数学试卷(含答案解析)_第1页
2023年上海市高境第一中学高考仿真模拟数学试卷(含答案解析)_第2页
2023年上海市高境第一中学高考仿真模拟数学试卷(含答案解析)_第3页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为()A. B. C. D.2.在展开式中的常数项为A.1 B.2 C.3 D.73.设命题:,,则为A., B.,C., D.,4.复数,若复数在复平面内对应的点关于虚轴对称,则等于()A. B. C. D.5.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()A., B.,C., D.,6.已知点在双曲线上,则该双曲线的离心率为()A. B. C. D.7.二项式的展开式中,常数项为()A. B.80 C. D.1608.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是()A.0 B.1 C.2 D.39.已知函数满足,当时,,则()A.或 B.或C.或 D.或10.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.下列与函数定义域和单调性都相同的函数是()A. B. C. D.12.设向量,满足,,,则的取值范围是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数()的图象与直线相切,则______.14.设全集,,,则______.15.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.16.已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,,则双曲线的离心率的取值范围为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.18.(12分)已知椭圆的右焦点为,过点且斜率为的直线与椭圆交于两点,线段的中点为为坐标原点.(1)证明:点在轴的右侧;(2)设线段的垂直平分线与轴、轴分别相交于点.若与的面积相等,求直线的斜率19.(12分)已知函数.(1)若曲线的切线方程为,求实数的值;(2)若函数在区间上有两个零点,求实数的取值范围.20.(12分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小值.21.(12分)随着现代社会的发展,我国对于环境保护越来越重视,企业的环保意识也越来越强.现某大型企业为此建立了5套环境监测系统,并制定如下方案:每年企业的环境监测费用预算定为1200万元,日常全天候开启3套环境监测系统,若至少有2套系统监测出排放超标,则立即检查污染源处理系统;若有且只有1套系统监测出排放超标,则立即同时启动另外2套系统进行1小时的监测,且后启动的这2套监测系统中只要有1套系统监测出排放超标,也立即检查污染源处理系统.设每个时间段(以1小时为计量单位)被每套系统监测出排放超标的概率均为,且各个时间段每套系统监测出排放超标情况相互独立.(1)当时,求某个时间段需要检查污染源处理系统的概率;(2)若每套环境监测系统运行成本为300元/小时(不启动则不产生运行费用),除运行费用外,所有的环境监测系统每年的维修和保养费用需要100万元.现以此方案实施,问该企业的环境监测费用是否会超过预算(全年按9000小时计算)?并说明理由.22.(10分)已知函数,其导函数为,(1)若,求不等式的解集;(2)证明:对任意的,恒有.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】

先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【题目详解】,

将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为,

再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【答案点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些问题中进行体现,在复习时要注意基础知识的理解与落实.三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解.2.D【答案解析】

求出展开项中的常数项及含的项,问题得解。【题目详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【答案点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。3.D【答案解析】

直接利用全称命题的否定是特称命题写出结果即可.【题目详解】因为全称命题的否定是特称命题,所以,命题:,,则为:,.故本题答案为D.【答案点睛】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.4.A【答案解析】

先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【题目详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【答案点睛】本题主要考查复数的基本运算和几何意义,属于基础题.5.D【答案解析】

根据指数函数的图象和特征以及图象的平移可得正确的选项.【题目详解】从题设中提供的图像可以看出,故得,故选:D.【答案点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.6.C【答案解析】

将点A坐标代入双曲线方程即可求出双曲线的实轴长和虚轴长,进而求得离心率.【题目详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【答案点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.7.A【答案解析】

求出二项式的展开式的通式,再令的次数为零,可得结果.【题目详解】解:二项式展开式的通式为,令,解得,则常数项为.故选:A.【答案点睛】本题考查二项式定理指定项的求解,关键是熟练应用二项展开式的通式,是基础题.8.C【答案解析】

建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【题目详解】设正方体边长为,建立空间直角坐标系如下图所示,,.①,,所以,故①正确.②,,不存在实数使,故不成立,故②错误.③,,,故平面不成立,故③错误.④,,设和成角为,则,由于,所以,故④正确.综上所述,正确的命题有个.故选:C【答案点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.9.C【答案解析】

简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【题目详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【答案点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.10.C【答案解析】

化简复数为、的形式,可以确定对应的点位于的象限.【题目详解】解:复数故复数对应的坐标为位于第三象限故选:.【答案点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题.11.C【答案解析】

分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.【题目详解】函数的定义域为,在上为减函数.A选项,的定义域为,在上为增函数,不符合.B选项,的定义域为,不符合.C选项,的定义域为,在上为减函数,符合.D选项,的定义域为,不符合.故选:C【答案点睛】本小题主要考查函数的定义域和单调性,属于基础题.12.B【答案解析】

由模长公式求解即可.【题目详解】,当时取等号,所以本题答案为B.【答案点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.2【答案解析】

设切点由已知可得,即可解得所求.【题目详解】设,因为,所以,即,又,.所以,即,.故答案为:.【答案点睛】本题考查导数的几何意义,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,难度较易.14.【答案解析】

先求出集合,,然后根据交集、补集的定义求解即可.【题目详解】解:,或;∴;∴.故答案为:.【答案点睛】本题主要考查集合的交集、补集运算,属于基础题.15.【答案解析】

记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:,由条件概率公式即得解.【题目详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A,“他的车能够充电2500次”为事件B,即求条件概率:故答案为:【答案点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.16.【答案解析】

法一:根据直角三角形的性质和勾股定理得,,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,,,,,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【题目详解】法一:,,,,,,设,则,令,所以时,,在上单调递增,,,.法二:,,令,,,,,,,,,.故答案为:.【答案点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1).(2)1【答案解析】

(1)先根据题意建立空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2,由AN=λ,设N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),再求得平面PBC的一个法向量,利用直线MN与平面PBC所成角的正弦值为,由|cos〈,〉|===求解.【题目详解】(1)因为PA⊥平面ABCD,且AB,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD.又因为∠BAD=90°,所以PA,AB,AD两两互相垂直.分别以AB,AD,AP为x,y,z轴建立空间直角坐标系,则由AD=2AB=2BC=4,PA=4可得A(0,0,0),B(2,0,0),C(2,2,0),D(0,4,0),P(0,0,4).又因为M为PC的中点,所以M(1,1,2).所以=(-1,1,2),=(0,0,4),所以cos〈,〉===,所以异面直线AP,BM所成角的余弦值为.(2)因为AN=λ,所以N(0,λ,0)(0≤λ≤4),则=(-1,λ-1,-2),=(0,2,0),=(2,0,-4).设平面PBC的法向量为=(x,y,z),则即令x=2,解得y=0,z=1,所以=(2,0,1)是平面PBC的一个法向量.因为直线MN与平面PBC所成角的正弦值为,所以|cos〈,〉|===,解得λ=1∈[0,4],所以λ的值为1.【答案点睛】本题主要考查了空间向量法研究空间中线线角,线面角的求法及应用,还考查了转化化归的思想和运算求解的能力,属于中档题.18.(1)证明见解析(2)【答案解析】

(1)设出直线的方程,与椭圆方程联立,利用根与系数的关系求出点的横坐标即可证出;(2)根据线段的垂直平分线求出点的坐标,即可求出的面积,再表示出的面积,由与的面积相等列式,即可解出直线的斜率.【题目详解】(1)由题意,得,直线()设,,联立消去,得,显然,,则点的横坐标,因为,所以点在轴的右侧.(2)由(1)得点的纵坐标.即.所以线段的垂直平分线方程为:.令,得;令,得.所以的面积,的面积.因为与的面积相等,所以,解得.所以当与的面积相等时,直线的斜率.【答案点睛】本题主要考查直线与椭圆的位置关系的应用、根与系数的关系应用,以及三角形的面积的计算,意在考查学生的数学运算能力,属于中档题.19.(1);(2)或【答案解析】

(1)根据解析式求得导函数,设切点坐标为,结合导数的几何意义可得方程,构造函数,并求得,由导函数求得有最小值,进而可知由唯一零点,即可代入求得的值;(2)将解析式代入,结合零点定义化简并分离参数得,构造函数,根据题意可知直线与曲线有两个交点;求得并令求得极值点,列出表格判断的单调性与极值,即可确定与有两个交点时的取值范围.【题目详解】(1)依题意,,,设切点为,,故,故,则;令,,故当时,,当时,,故当时,函数有最小值,由于,故有唯一实数根0,即,则;(2)由,得.所以“在区间上有两个零点”等价于“直线与曲线在有两个交点”;由于.由,解得,.当变化时,与的变化情况如下表所示:30+0极小值极大值所以在,上单调递减,在上单调递增.又因为,,,,故当或时,直线与曲线在上有两个交点,即当或时,函数在区间上有两个零点.【答案点睛】本题考查了导数的几何意义应用,由切线方程求参数值,构造函数法求参数的取值范围,函数零点的意义及综合应用,属于难题.20.(1)是函数的极大值点,理由详见解析;(2)1.【答案解析】

(1)将直接代入,对求导得,由于函数单调性不好判断,故而构造函数,继续求导,判断导函数在左右两边的正负情况,最后得出,是函数的极大值点;(2)利用题目已有条件得,再证明时,不等式恒成立,即证,从而可知整数的最小值为1.【题目详解】解:(1)当时,.令,则当时,.即在内为减函数,且∴当时,;当时,.∴在内是增函数,在内是减函数.综上,是函数的极大值点.(2)由题意,得,即.现证明当时,不等式成立,即.即证令则∴当时,;当时,.∴在内单调递增,在内单调递减,的最大值为.∴当时,.即当时,不等式成立.综上,整数的最小值为.【答案点睛】本题考查学生利用导数处理函数的极值,最值,判断函数的单调性,由此来求解函数中的参数的取值范围,对学生要求较高,然后需要学生能构造新函数处理恒成立问题,为难题21.(1);(2)不会超过预算

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论