




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是A. B.C. D.不能确定2.已知圆和圆,则两圆的位置关系为A.内含 B.内切C.相交 D.外切3.如果是定义在上的函数,使得对任意的,均有,则称该函数是“-函数”.若函数是“-函数”,则实数的取值范围是()A. B.C. D.4.已知函数是定义域为R的偶函数,且在上单调递减,则不等式的解集为A. B.C. D.5.在空间四边形ABCD中,AB=BC,AD=CD,E为对角线AC的中点,下列判断正确的是()A平面ABC⊥平面BED B.平面ABC⊥平面ABDC.平面ABC⊥平面ADC D.平面ABD⊥平面BDC6.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称7.函数的图象可能是A. B.C. D.8.如果,,那么()A. B.C. D.9.若,则的值为()A. B.C. D.10.已知函数,若函数有3个零点,则实数m的取值范围()A. B.C.(0,1) D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知幂函数(为常数)的图像经过点,则__________12.命题“,”的否定形式为__________________________.13.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.14.已知函数,其所有的零点依次记为,则_________.15.函数的部分图象如图所示.若,且,则_____________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数.(1)存在,使得不等式成立,求实数k的取值范围;(2)方程有负实数解,求实数k的取值范围.17.已知,函数.(Ⅰ)当时,解不等式;(Ⅱ)若关于的方程的解集中恰有一个元素,求的取值范围;(Ⅲ)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.18.如图,在中,,,点在的延长线上,点是边上的一点,且存在非零实数,使.(Ⅰ)求与的数量积;(Ⅱ)求与的数量积.19.已知函数.(1)若函数在单调递增,求实数的取值范围;(2),,使在区间上值域为.求实数的取值范围.20.已知函数(1)根据函数单调性的定义,证明在区间上单调递减,在区间上单调递增;(2)令,若对,,都有成立,求实数取值范围21.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案【详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有,又由在上为增函数,则在上为减函数,若,则,又由,则,则有,又由,则,故选A【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题2、B【解析】由于圆,即
表示以为圆心,半径等于1的圆圆,即,表示以为圆心,半径等于3的圆由于两圆的圆心距等于等于半径之差,故两个圆内切故选B3、A【解析】根据题中的新定义转化为,即,根据的值域求的取值范围.【详解】,,函数是“-函数”,对任意,均有,即,,即,又,或.故选:A【点睛】关键点点睛:本题考查函数新定义,关键是读懂新定义,并使用新定义,并能转化为函数值域解决问题.4、D【解析】本题首先可以根据函数是定义域为R的偶函数判断出函数的对称轴,然后通过在上单调递减判断出函数在上的单调性,最后根据即可列出不等式并解出答案【详解】因为函数是定义域为R的偶函数,所以函数关于轴对称,即函数关于对称,因为函数在上单调递减,所以函数在上单调递增,因为,所以到对称轴的距离小于到对称轴的距离,即,,化简可得,,解得,故选D【点睛】本题考查了函数的单调性和奇偶性的相关性质,若函数是偶函数,则函数关于轴对称且轴左右两侧单调性相反,考查推理能力与计算能力,考查函数方程思想与化归思想,是中档题5、A【解析】利用面面垂直的判定定理逐一判断即可【详解】连接DE,BE.因为E为对角线AC的中点,且AB=BC,AD=CD,所以DE⊥AC,BE⊥AC因为DE∩BE=E,所以AC⊥面BDEAC⊂面ABC,所以平面ABC⊥平面BED,故选A【点睛】本题主要考查了面面垂直的判定,要求熟练掌握面面垂直的判定定理6、D【解析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.7、C【解析】函数即为对数函数,图象类似的图象,位于轴的右侧,恒过,故选:8、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.9、D【解析】,故选D.10、C【解析】函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点,作出图象,即可求出实数的取值范围【详解】因为函数有3个零点,所以有三个实根,即直线与函数的图象有三个交点作出函数图象,由图可知,实数的取值范围是故选:C.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、3【解析】设,依题意有,故.12、##【解析】根据全称量词命题的否定直接得出结果.【详解】命题“”的否定为:,故答案为:13、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.14、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.15、##【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出.【详解】由图象可知,,即,则,此时,,由于,所以,即.,且,由图象可知,,则.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)令,然后分离参数,求出函数的最大值即可得答案;(2)由题意,令,则,原问题等价于:在上有解,即在上有解,利用一元二次方程根的分布即可求解.【小问1详解】解:由题意,令,则原不等式等价于:存在,使成立,即存在,使成立,由二次函数的性质知,当,即时,取得最大值1,所以【小问2详解】解:由题意,因为方程有负实数根,则令,有,原问题等价于:在上有解,即在上有解令,,则或或或或,解得或或或或,即实数k的取值范围为.17、(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)当时,利用对数函数的单调性,直接解不等式即可;(Ⅱ)化简关于的方程,通过分离变量推出的表达式,通过解集中恰有一个元素,利用二次函数的性质,即可求的取值范围;(Ⅲ)在上单调递减利用复合函数的单调性求解函数的最值,令,化简不等式,转化求解不等式的最大值,然后推出的范围.【详解】(Ⅰ)当时,,∴,整理得,解得.所以原不等式的解集为.(Ⅱ)方程,即为,∴,∴,令,则,由题意得方程在上只有一解,令,,转化为函数与的图象在上只有一个交点.则分别作出函数与的图象,如图所示结合图象可得,当或时,直线y=a和的图象只有一个公共点,即方程只有一个解所以实数范围为.(Ⅲ)因为函数在上单调递减,所以函数定义域内单调递减,所以函数在区间上的最大值为,最小值为,所以由题意得,所以恒成立,令,所以恒成立,因为在上单调递增,所以∴,解得,又,∴所以实数的取值范围是.【点睛】解答此类题时注意以下几点:(1)对于复合函数的单调性,可根据“同增异减”的方法进行判断;(2)已知方程根的个数(函数零点的个数)求参数范围时,可通过解方程的方法求解,对于无法解方程的,可通过分离、构造函数的方法转化为函数图象公共点个数的问题处理(3)解不等式的恒成立问题时,通常采取分离参数的方法,将问题转化为求函数的最值的问题18、(Ⅰ)-18;(Ⅱ).【解析】(Ⅰ)在中由余弦定理得,从而得到三角形为等腰三角形,可得,由数量积的定义可得.(Ⅱ)根据所给的向量式可得点在的角平分线上,故可得,所以,因为,所以得到.设设,则得到,,根据数量积的定义及运算率可得所求试题解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以点在的角平分线上,又因为点是边上的一点,所以由角平分线性质定理得,所以.因为,所以.设,则,由,得,所以,又,所以点睛:解题时注意在三角形中常见的向量与几何特征的关系:(1)在中,若或,则点是的外心;(2)在中,若,则点是的重心;(3)在中,若,则直线一定过的重心;(4)在中,若,则点是的垂心;(5)在中,若,则直线通过的内心.19、(1);(2).【解析】(1)由对数复合函数的单调性得,即可求参数范围.(2)首先判断的单调性并确定在上的值域,结合已知易得在内有两不等实根,,应用换元法进一步转化为两个函数有两个交点求参数范围.【小问1详解】∵在单调递增,∴在单调递增,且∴,解得.【小问2详解】由,在上是减函数.所以,在上的值域为,故,整理得:,即在内有两不等实根,,令,当时,则关于的在内有两个不等实根.整理得:,即与由两个不同的交点,又,当且仅当时等号成立,则上递减,上递增,且其值域为.∴函数图象如下:∴,即.【点睛】关键点点睛:第二问,根据对数复合函数的单调性及其区间值域,将问题转化为方程在某区间内有两个不同实根,应用参变分离将问题进一步化为两个函数在某区间内有两个交点.20、(1)证明见解析(2)【解析】(1)由单调性定义证明;(2)换元,设,,由(1)求得的范围,然后由二次函数性质求得最大值和最小值,由最大值减去最小值不大于可得的范围【小问1详解】证明:设,,且,则,当时,∴,,∴,∴,即,∴函数在上单调递减当时,∴,,∴,∴,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓库风险评估与管理计划
- 2025年网络管理员考试学习方向试题
- 学科交叉与综合课程设计计划
- 幼儿园语言学习活动策划计划
- 精细化管理与战略风险防范试题及答案
- 2025年软件设计师复习计划与试题及答案
- 持续学习的个人工作目标计划
- 2025年时事政治热点题库考试试题库(历年真题)附答案详解
- 职业选择与个人价值的关系-高考作文考试试题及答案
- 自动化对2025年公司战略的推动及试题及答案
- 2024管网数据库表结构与标识符标准及外业数据采集提交规范
- 服务基层行治疗(3.5.4消毒与灭菌工作管理)
- 2023年二级注册计量师考试题目及答案
- 2021年6月高考英语试题(浙江卷)
- 武汉武昌区五校联考2023-2024学年中考五模英语试题含答案
- 2024年湖南省长沙市中考数学试题
- 公路水运工程施工企业主要负责人和安全生产管理人员考核大纲和模拟试题库1
- DL-T5024-2020电力工程地基处理技术规程
- 《凤凰大视野》变局1962-七千人大会真相-(全集)
- 公园维修施工组织设计方案方案
- 2024年百联集团有限公司招聘笔试冲刺题(带答案解析)
评论
0/150
提交评论