2023届安徽省泗县刘圩高级中学高一数学第一学期期末监测模拟试题含解析_第1页
2023届安徽省泗县刘圩高级中学高一数学第一学期期末监测模拟试题含解析_第2页
2023届安徽省泗县刘圩高级中学高一数学第一学期期末监测模拟试题含解析_第3页
2023届安徽省泗县刘圩高级中学高一数学第一学期期末监测模拟试题含解析_第4页
2023届安徽省泗县刘圩高级中学高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的定义域为()A.R B.C. D.2.函数的图像恒过定点,点在幂函数的图像上,则()A.16 B.8C.4 D.23.已知函数,下列结论中错误的是()A.的图像关于中心对称B.在上单调递减C.的图像关于对称D.的最大值为34.已知,且点在线段的延长线上,,则点的坐标为()A. B.C. D.5.设,且,则()A. B.10C.20 D.1006.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.7.已知f(x-1)=2x-5,且f(a)=6,则a等于()A. B.C. D.8.已知函数,,则函数的零点个数不可能是()A.2个 B.3个C.4个 D.5个9.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件10.若函数的图象如图所示,则下列函数与其图象相符的是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,若方程有4个不同的实数根,则的取值范围是____12.已知是定义在R上的奇函数,当时,,则当时,______13.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____14.已知幂函数图像过点,则该幂函数的解析式是______________15.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知集合,集合(1)当时,求和(2)若,求实数m的取值范围17.如图所示,矩形ABCD中,AD⊥平面ABE,AE=EB=BC=2,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求三棱锥C-BGF的体积18.已知集合,.(1)若,求实数t的取值范围;(2)若“”是“”的必要不充分条件,求实数t的取值范围19.已知函数.(1)求函数的单调递增区间;(2)求函数在区间上的最大值和最小值.20.定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界已知函数当,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;若函数在上是以3为上界的有界函数,求实数a的取值范围21.已知,,其中(1)若是的充分条件,求实数的取值范围;(2)是否存在,使得是的必要条件?若存在,求出的值;若不存在,请说明理由

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】要使函数有意义,则需要满足即可.【详解】要使函数有意义,则需要满足所以的定义域为,故选:B2、A【解析】利用恒等式可得定点P,代入幂函数可得解析式,然后可得.【详解】当时,,所以函数的图像恒过定点记,则有,解得所以.故选:A3、B【解析】根据三角函数的性质,依次整体代入检验即可得答案.【详解】解:对于A选项,当时,,所以是的对称中心,故A选项正确;对于B选项,当时,,此时函数在区间上不单调,故B选项错误;对于C选项,当时,,所以的图像关于对称,故C选项正确;对于D选项,的最大值为,故D选项正确.故选:B4、C【解析】设,根据题意得出,由建立方程组求解即可.【详解】设,因为,所以即故选:C【点睛】本题主要考查了由向量共线求参数,属于基础题.5、A【解析】根据指数式与对数的互化和对数的换底公式,求得,,进而结合对数的运算公式,即可求解.【详解】由,可得,,由换底公式得,,所以,又因为,可得故选:A.6、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法7、B【解析】先用换元法求出,然后由函数值求自变量即可.【详解】令,则,可得,即,由题知,解得.故选:B8、B【解析】由可得或,然后画出的图象,结合图象可分析出答案.【详解】由可得或的图象如下:所以当时,,此时无零点,有2个零点,所以的零点个数为2;当时,,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时有4个零点,有2个零点,所以的零点个数为6;当时,,此时有3个零点,有2个零点,所以的零点个数为5;当且时,此时有2个零点,有2个零点,所以的零点个数为4;当时,,此时的零点个数为2;当时,,此时有2个零点,有3个零点,所以的零点个数为5;当时,,此时有2个零点,有4个零点,所以的零点个数为6;当时,,此时有2个零点,有2个零点,所以零点个数为4;当时,,此时有2个零点,无零点,所以的零点个数为2;综上:的零点个数可以为2、4、5、6,故选:B9、A【解析】分别讨论充分性与必要性,可得出答案.详解】由题意,,显然可以推出,即充分性成立,而不能推出,即必要性不成立.故“”是“”的充分而不必要条件.故选:A.【点睛】本题考查充分不必要条件,考查不等式的性质,属于基础题.10、B【解析】由函数的图象可知,函数,则下图中对于选项A,是减函数,所以A错误;对于选项B,的图象是正确的;对C,是减函数,故C错;对D,函数是减函数,故D错误。故选B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.12、【解析】根据奇函数的性质求解【详解】时,,是奇函数,此时故答案为:13、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.14、【解析】设出幂函数的函数表达,然后代点计算即可.【详解】设,因为,所以,所以函数的解析式是故答案为:.15、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(或者);(或者)(2)【解析】(1)代入,结合集合的并、补运算即得解;(2)分,两种情况讨论,列出不等关系,计算即得解【小问1详解】当时,所以(或者);(或者)【小问2详解】当时,则,解得当时,则,解得,所以m不存在综上所述,17、(1)见详解;(2)见详解;(3)【解析】(1)证明∵AD⊥平面ABE,AD∥BC,∴BC⊥平面ABE,则AE⊥BC.又∵BF⊥平面ACE,则AE⊥BF,又BC∩BF=B,∴AE⊥平面BCE.(2)证明由题意可得G是AC的中点,连结FG,∵BF⊥平面ACE,∴CE⊥BF.而BC=BE,∴F是EC的中点,在△AEC中,FG∥AE,∴AE∥平面BFD.(3)∵AE∥FG.而AE⊥平面BCE,∴FG⊥平面BCF.∵G是AC中点,F是CE中点,∴FG∥AE且FG=AE=1.∴Rt△BCE中,BF=CE=CF=,∴S△CFB=××=1.∴VC-BGF=VG-BCF=·S△CFB·FG=.18、(1)(2)【解析】(1)首先求出集合,再对与两种情况讨论,分别得到不等式,解得即可;(2)依题意可得集合,分与两种情况讨论,分别到不等式,解得即可;【小问1详解】解:由得解,所以,又若,分类讨论:当,即解得,满足题意;当,即,解得时,若满足,则必有或;解得.综上,若,则实数t的取值范围为.【小问2详解】解:由“”是“”的必要不充分条件,则集合,若,即,解得,若,即,即,则必有,解得,综上可得,,综上所述,当“”是“”的必要不充分条件时,即为所求19、(1),(2),【解析】(1)利用余弦函数的增减性列不等式可得答案;(2)先讨论函数的增减区间,再结合所给角的范围,可得最值.【小问1详解】令,,可得,故的单调递增区间为,.【小问2详解】由(1)知当时,在单调递增,可得在单调递减,而,从而在单调递减,在单调递增,故,.20、(1)值域为(3,+∞);不是有界函数,详见解析(2)【解析】(1)当a=1时,f(x)=1+因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞),故不存在常数M>0,使|f(x)|≤M成立,所以函数f(x)在(-∞,0)上不是有界函数.(2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.-3≤f(x)≤3,-4-≤a·≤2-,所以-4·2x-≤a≤2·2x-在[0,+∞)上恒成立.所以≤a≤,设2x=t,h(t)=-4t-,p(t)=2t-,由x∈[0,+∞)得t≥1,设1≤t1<t2,h(t1)-h(t2)=>0,p(t1)-p(t2)=<0,所以h(t)在[1,+∞)上递减,p(t)在[1,+∞

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论