2022-2023学年河北省邢台市桥东区邢台二中高一上数学期末复习检测试题含解析_第1页
2022-2023学年河北省邢台市桥东区邢台二中高一上数学期末复习检测试题含解析_第2页
2022-2023学年河北省邢台市桥东区邢台二中高一上数学期末复习检测试题含解析_第3页
2022-2023学年河北省邢台市桥东区邢台二中高一上数学期末复习检测试题含解析_第4页
2022-2023学年河北省邢台市桥东区邢台二中高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若,则角终边所在象限是A.第一或第二象限 B.第一或第三象限C.第二或第三象限 D.第三或第四象限2.将的图象向右平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍得到的图象,则A. B.C. D.3.若一束光线从点射入,经直线反射到直线上的点,再经直线反射后经过点,则点的坐标为()A. B.C. D.4.已知扇形的圆心角为,面积为8,则该扇形的周长为()A.12 B.10C. D.5.函数f(x)是定义在R上的奇函数,当x>0时,f(x)=﹣x+1,则当x<0时,f(x)等于()A.﹣x+1 B.﹣x﹣1C.x+1 D.x﹣16.设集合,.若,则()A. B.C. D.7.一个几何体的三视图如图所示(单位:),则该几何体的体积为()A B.C. D.8.直线的倾斜角是A. B.C. D.9.函数的图象与函数的图象关于直线对称,则函数的单调递减区间为A. B.C. D.10.已知函数,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为A.18 B.17C.15 D.13二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知,,向量与的夹角为,则________12.已知函数,若函数有三个零点,则实数的取值范围是________.13.函数的单调减区间是__________14.第24届冬季奥林匹克运动会(TheXXIVOlympicWinterGames),即2022年北京冬季奥运会,计划于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬季奥运会设7个大项,15个分项,109个小项.某大学青年志愿者协会接到组委会志愿者服务邀请,计划从大一至大三青年志愿者中选出24名志愿者,参与北京冬奥会高山滑雪比赛项目的服务工作.已知大一至大三的青年志愿者人数分别为50,40,30,则按分层抽样的方法,在大一青年志愿者中应选派__________人.15.___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知集合,(1),求实数的取值范围;(2)设,,若是的必要不充分条件,求实数的取值范围17.已知函数是定义在R上的偶函数,当时,(1)画出函数的图象;(2)根据图象写出的单调区间,并写出函数的值域.18.已知向量,,.(Ⅰ)若关于的方程有解,求实数的取值范围;(Ⅱ)若且,求.19.如图,在矩形中,点是边上中点,点在边上(1)若点是上靠近的三等分点,设,求的值(2)若,当时,求的长20.已知函数(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求不等式的解集21.有一种候鸟每年都按一定的路线迁陟,飞往繁殖地产卵.科学家经过测量发现候鸟的飞行速度可以表示为函数,单位是,其中表示候鸟每分钟耗氧量的单位数,表示测量过程中候鸟每分钟的耗氧偏差.(参考数据:,,)(1)若=3,候鸟每分钟的耗氧量为8100个单位时,它的飞行速度是多少?(2)若=6,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(3)若雄鸟的飞行速度为,雌鸟的飞行速度为,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】利用同角三角函数基本关系式可得,结合正切值存在可得角终边所在象限【详解】,且存在,角终边所在象限是第三或第四象限故选D【点睛】本题考查三角函数的象限符号,是基础题2、A【解析】由三角函数图象的平移变换及伸缩变换可得:将的图象所有点的横坐标缩短到原来的倍,再把所得图象向左平移个单位,即可得到的图象,得解【详解】解:将的图象所有点的横坐标缩短到原来的倍得到,再把所得图象向左平移个单位,得到,故选A【点睛】本题主要考查了三角函数图象的平移变换及伸缩变换,属于简单题3、C【解析】由题可求A关于直线的对称点为及关于直线的对称点为,可得直线的方程,联立直线,即得.【详解】设A关于直线的对称点为,则,解得,即,设关于直线的对称点为,则,解得,即,∴直线的方程为:代入,可得,故.故选:C.4、A【解析】利用已知条件求出扇形的半径,即可得解周长【详解】解:设扇形的半径r,扇形OAB的圆心角为4弧度,弧长为:4r,其面积为8,可得4r×r=8,解得r=2扇形的周长:2+2+8=12故选:A5、B【解析】当x<0时,,选B.点睛:已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.6、C【解析】∵集合,,∴是方程的解,即∴∴,故选C7、B【解析】由三视图知,该几何体由两个相同的圆锥和一个圆柱组合而成,圆锥的底面圆半径为1,高为1,圆柱的母线长为2,底面圆半径为1,所以几何体的体积为,选B.8、B【解析】,斜率为,故倾斜角为.9、D【解析】先由函数是函数的反函数,所以,再求得,再求函数的定义域,再结合复合函数的单调性求解即可.【详解】解:由题意函数的图象与函数的图象关于直线对称知,函数是函数的反函数,所以,即,要使函数有意义,则,即,解得,设,则函数在上单调递增,在上单调递减.因为函数在定义域上为增函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是,故选D【点睛】本题考查了函数的反函数的求法及复合函数的单调性,重点考查了函数的定义域,属中档题.10、D【解析】由已知可得,结合,得到(),再由是的一个单调区间,可得T,即,进一步得到,然后对逐一取值,分类求解得答案【详解】由题意,得,∴,又,∴()∵是一个单调区间,∴T,即,∵,∴,即①当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;②当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;③当,即时,,,∴,∵,∴,此时在上单调递增,∴符合题意,故选D【点睛】本题主要考查正弦型函数的单调性,对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、1【解析】由于.考点:平面向量数量积;12、【解析】作出函数图象,进而通过数形结合求得答案.【详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.13、【解析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.14、10【解析】根据分层抽样原理求出抽取的人数【详解】解:根据分层抽样原理知,,所以在大一青年志愿者中应选派10人故答案为:1015、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)化简集合,,由,利用两个集合左右端点的大小分类得出实数的取值范围(2)根据题意可得,推不出,即是的真子集,进而得出实数的取值范围【小问1详解】由题意,,且,或,或,实数的取值范围是【小问2详解】命题,命题,是的必要不充分条件,,推不出,即是的真子集,,解得:实数的取值范围为17、(1)见解析;(2)单调区间为:上是增函数,上是减函数,值域【解析】(1)由偶函数的图象关于y轴对称可知,要画出函数的图象,只须作出当时的图象,然后关于y轴对称即可;(2)观察图象,结合函数单调性和值域的定义,写出的单调区间及值域.【详解】(1)函数的图象如图所示

(2)由图象得,的单调区间为:上是增函数,上是减函数,值域为.【点睛】本题考查了偶函数的性质:图象关于y轴对称和数形结合思想,函数的图象可直观反映其性质,利用函数的图象可以解答函数的值域(最值),单调性,奇偶性等问题,也可用来解答不等式的有关题目.18、(1)(2)【解析】(Ⅰ)向量,,,所以.关于的方程有解,即关于的方程有解.因为,所以当时,方程有解,即解得实数的取值范围;(Ⅱ)因为,所以,即.当时,,由,解得当时,,由,解得.试题解析:(Ⅰ)∵向量,,,∴.关于的方程有解,即关于的方程有解.∵,∴当时,方程有解.则实数的取值范围为.(Ⅱ)因为,所以,即.当时,,.当时,,.19、(1);(2).【解析】(1),∵是边的中点,点是上靠近的三等分点,∴,又∵,,∴,;(2)设,则,以,为基底,,,又,∴,解得,故长为20、(1);(2)奇函数;证明见解析;(3)【解析】(1)利用对数的性质可得,解不等式即可得函数的定义域.(2)根据奇偶性的定义证明的奇偶性即可.(3)由的解析式判断单调性,利用对数函数的单调性解不等式即可.【详解】(1)要使有意义,则,解得:∴的定义域为.(2)为奇函数,证明如下:由(1)知:且,∴为奇函数,得证(3)∵在内是增函数,由,∴,解得,∴不等式的解集是.21、(1)(2)555(3)9【解析】(1)直接代入求值即可,其中要注意对数的运算;(2)还是代入求值即可;(3)代入后得两个方程,此时我们不需要解出、,只要求出它们的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论