




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知命题,则为()A. B.C. D.2.关于,,下列叙述正确的是()A.若,则是的整数倍B.函数的图象关于点对称C.函数的图象关于直线对称D.函数在区间上为增函数.3.为了得到函数的图象,可以将函数的图象A.向右平移 B.向右平移C.向左平移 D.向左平移4.在平行四边形ABCD中,E是CD中点,F是BE中点,若+=m+n,则()A., B.,C., D.,5.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.86.把11化为二进制数为A. B.C. D.7.已知直线与圆交于A,两点,则()A.1 B.C. D.8.若直线与直线互相垂直,则等于(
)A.1 B.-1C.±1 D.-29.设则的值为A. B.C.2 D.10.命题“”的否定是A. B.C. D.11.已知指数函数在上单调递增,则的值为()A.3 B.2C. D.12.函数(且)的图像恒过定点()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设函数,则是_________(填“奇函数”或“偶函数”);对于一定的正数T,定义则当时,函数的值域为_________14.若函数,则函数的值域为___________.15.若函数(,且)的图象经过点,则___________.16.的定义域为________________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.对于定义在上的函数,如果存在实数,使得,那么称是函数的一个不动点.已知(1)当时,求的不动点;(2)若函数有两个不动点,,且①求实数的取值范围;②设,求证在上至少有两个不动点18.已知点及圆.(1)若直线过点且与圆心的距离为1,求直线的方程;(2)设过点的直线与圆交于两点,当时,求以线段为直径的圆的方程;(3)设直线与圆交于两点,是否存在实数,使得过点的直线垂直平分弦?若存在,求出实数的值;若不存在,请说明理由19.已知的数(1)有解时,求实数的取值范围;(2)当时,总有,求定的取值范围20.设函数f(x)的定义域为I,对于区间,若,x2∈D(x1<x2)满足f(x1)+f(x2)=1,则称区间D为函数f(x)的V区间(1)证明:区间(0,2)是函数的V区间;(2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围;(3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间21.已知集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数a的值.22.已知函数fx=-x2(1)求不等式cx(2)当gx=fx-mx在
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】由全称命题的否定为存在命题,分析即得解【详解】由题意,命题由全称命题的否定为存在命题,可得:为故选:D2、B【解析】由题意利用余弦函数的图象和性质,逐一判断各个结论是否正确,从而得出结论.【详解】对于A,的周期为,若,则是的整数倍,故A错误;对于B,当时,,则函数的图象关于点中心对称,B正确;对于C,当时,,不是函数最值,函数的图象不关于直线对称,C错误;对于D,,,则不单调,D错误故选:B.3、B【解析】先将,进而由平移变换规律可得解.【详解】函数,所以只需将向右平移可得.故选B.【点睛】本题主要考查了三角函数的图像平移变换,解题的关键是将函数名统一,需要利用诱导公式,属于中档题.4、B【解析】通过向量之间的关系将转化到平行四边形边上即可【详解】由题意可得,同理:,所以所以,故选B.【点睛】本题考查向量的线性运算,重点利用向量的加减进行转化,同时,利用向量平行进行代换5、B【解析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B6、A【解析】11÷2=5…15÷2=2…12÷2=1…01÷2=0…1故11(10)=1011(2)故选A.7、C【解析】用点到直线距离公式求出圆心到直线的距离,进而利用垂径定理求出弦长.【详解】圆的圆心到直线距离,所以.故选:C8、C【解析】分类讨论:两条直线的斜率存在与不存在两种情况,再利用相互垂直的直线斜率之间的关系即可【详解】解:①当时,利用直线方程分别化为:,,此时两条直线相互垂直②如果,两条直线的方程分别为与,不垂直,故;③,当时,此两条直线的斜率分别为,两条直线相互垂直,,化为,综上可知:故选【点睛】本题考查了相互垂直的直线斜率之间的关系、分类讨论思想方法,属于基础题9、D【解析】由题意可先求f(2),然后代入f(f(2))=f(﹣1)可得结果.【详解】解:∵∴f(2)∴f(f(2))=f(﹣1)=故选D【点睛】本题主要考查了分段函数的函数值的求解,解题的关键是需要判断不同的x所对应的函数解析式,属于基础试题10、C【解析】全称命题的否定是存在性命题,所以,命题“”的否定是,选C.考点:全称命题与存在性命题.11、B【解析】令系数为,解出的值,又函数在上单调递增,可得答案【详解】解得,又函数在上单调递增,则,故选:B12、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、①.偶函数②.【解析】利用函数奇偶性的定义判断的奇偶性;分别求出分段函数每段上的值域,从而求出的值域为.【详解】函数定义域为R,且,故是偶函数;,因为,所以,当时,,当时,,故的值域为故答案为:偶函数,14、【解析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.15、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.16、【解析】由分子根式内部的代数式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定义域为考点:函数的定义域及其求法.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)的不动点为和;(2)①,②证明见解析.【解析】(1)当时,函数,令,即可求解;(2)①由题意,得到的两个实数根为,,设,根据二次函数的图象与性质,列出不等式即可求解;②把可化为,设的两个实数根为,,根据是方程的实数根,得出,结合函数单调性,即可求解.【详解】(1)当时,函数,方程可化为,解得或,所以的不动点为和(2)①因为函数有两个不动点,,所以方程,即的两个实数根为,,记,则的零点为和,因为,所以,即,解得.所以实数的取值范围为②因为方程可化为,即因为,,所以有两个不相等的实数根设的两个实数根为,,不妨设因为函数图象的对称轴为直线,且,,,所以记,因为,且,所以是方程的实数根,所以1是的一个不动点,,因为,所以,,且的图象在上的图象是不间断曲线,所以,使得,又因为在上单调递增,所以,所以是的一个不动点,综上,在上至少有两个不动点【点睛】利用函数的图象求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.18、(1)或;(2);(3)不存在.【解析】(1)设出直线方程,结合点到直线距离公式,计算参数,即可.(2)证明得到点P为MN的中点,建立圆方程,即可.(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线的斜率,计算a的值,即可【详解】(1)直线斜率存在时,设直线的斜率为,则方程为,即.又圆的圆心为,半径,由,解得.所以直线方程为,即.当的斜率不存在时,的方程为,经验证也满足条件即直线的方程为或.(2)由于,而弦心距,所以.所以恰为的中点故以为直径的圆的方程为.(3)把直线代入圆的方程,消去,整理得.由于直线交圆于两点,故,即,解得.则实数的取值范围是设符合条件的实数存在,由于垂直平分弦,故圆心必在上.所以的斜率,而,所以.由于,故不存在实数,使得过点的直线垂直平分弦.【点睛】考查了点到直线距离公式,考查了圆方程计算方法,考查了直线斜率计算方法,难度偏难19、(1);(2)【解析】(1)通过分离参数法得,再通过配方法求最值即可(2)由已知得恒成立,化简后只需满足且,求解即可.【详解】(1)由已知得,所以(2)由已知得恒成立,则所以实数的取值范围为20、(1)证明详见解析;(2)a>1;(3)证明详见解析.【解析】(1)取特殊点可以验证;(2)利用的单调递减可以求实数a的取值范围;(3)先证f(x)在上存在零点,然后函数在区间[0,+∞)上仅有2个零点,f(x)在[π,+∞)上不存在零点,利用定义说明区间[π,+∞)不是函数f(x)的V区间.详解】(1)设x1,x2∈(0,2)(x1<x2)若f(x1)+f(x2)=1,则所以lgx1+lgx2=lgx1x2=0,x1x2=1,取,,满足定义所以区间(0,2)是函数的V区间(2)因为区间[0,a]是函数的V区间,所以,x2∈[0,a](x1<x2)使得因为在[0,a]上单调递减所以,,所以,a-1>0,a>1故所求实数a的取值范围为a>1(3)因为,,所以f(x)在上存在零点,又因为f(0)=0所以函数f(x)在[0,π)上至少存在两个零点,因为函数在区间[0,+∞)上仅有2个零点,所以f(x)在[π,+∞)上不存在零点,又因为f(π)<0,所以,f(x)<0所以,x2∈[π,+∞)(x1<x2),f(x1)+f(x2)<0即因此不存在,x2∈[π,+∞)(x1<x2)满足f(x1)+f(x2)=1所以区间[π,+∞)不是函数f(x)的V区间【点睛】本题考查了函数的性质,对新定义的理解,要求不仅好的理解能力,还要有好的推理能力.21、(1)(2)【解析】(1)若,求出集合、B,进而求出;(2)根据题意得到A是B的真子集,分A为空集和不为空集两种情况,求出a的取值范围.【小问1详解】若,则,,所以.【小问2详解】因为“”是“”的充分不必要条件,所以,①当时,即时,不满足互异性,不符合题意;②当时,即或时,由①可知,时,不符合题意,当时,集合,满足,故可知符合题意.所以.22、(1)x∈(2)m≥1【解析】(1)由不等式fx>0的解集为x1<x<2可得x2-bx-c=0的两根是1,2,根据根系数的关系可求b=3和c=-2,代入不等式cx2【详解】(1)由fx>0的解集为x1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国家统计局平顶山调查队面向社会公开招聘劳务派遣人员4名考前自测高频考点模拟试题及答案详解(夺冠)
- 2025杭州大有供电服务有限公司招聘115人模拟试卷及答案详解(名师系列)
- 2025广西贺州市中小学(幼儿园)教师公开招聘更正岗位计划表相关的模拟试卷参考答案详解
- 2025河南郑州市建筑设计研究院招聘35人考前自测高频考点模拟试题及参考答案详解一套
- 2025年宁波慈溪逍林镇人民政府公开招聘编外工作人员2人模拟试卷及答案详解(夺冠)
- 2025黑龙江哈尔滨“丁香人才周”(春季)事业单位引才招聘模拟试卷及答案详解(必刷)
- 2025金华武义县教育系统赴安徽师范大学招聘5人考前自测高频考点模拟试题附答案详解(典型题)
- 2025北京石景山区招聘社区工作者模拟试卷及答案详解(典优)
- 2025湖南湘西民族职业技术学院招聘45人模拟试卷附答案详解(典型题)
- 2025福建三明清流县金星园建设发展有限公司招聘消防员2人考前自测高频考点模拟试题及参考答案详解
- 2025年专转本计算机真题答案
- 江西省赣州市赣县区实验学校2025-2026学年高一上学期9月月考物理试题(含解析)
- 凿岩台车安全培训内容课件
- 2025鄂尔多斯市国源矿业开发有限责任公司社会招聘75人笔试参考题库附带答案详解
- 动态血压监测结果解读
- 2025至2030银行贷款产业深度调研及前景趋势与投资报告
- 竞彩考试题目及答案
- 中线导管学习汇报
- 中药制剂进修汇报
- 第4课 科技力量大 第三课时(课件)2025-2026学年道德与法治三年级上册统编版
- 皮质醇增多症患者的麻醉管理
评论
0/150
提交评论